$$2x + 3y = 6 + 5x$$$$x^2 - 2y^2 - \frac{3x}{4y} + 6xy = 60$$
Let $\chi=17x+5$ and $\gamma=17y-29$
Then $x=\frac1{17}\!\left(\chi-5\right)$ and $y=\frac1{17}\!\left(\gamma+29\right)$
$$
\frac2{17}\!\left(\chi-5\right) + \frac3{17}\!\left(\gamma+29\right) = 6 + \frac5{17}\!\left(\chi-5\right)
$$
$$
\left(\frac1{17}\!\left(\chi-5\right)\right)^2 - 2\cdot\left(\frac1{17}\!\left(\gamma+29\right)\right)^2 -
\frac{\frac3{17}\!\left(\chi-5\right)}{\frac4{17}\!\left(\gamma+29\right)} +
6\left(\gamma+29\right)\!\!\left(\chi-5\right) = 60
$$
By expanding, collecting terms and multiplying with constants these can be quite easily be changed into
$$
\gamma=\chi
$$
$$
\frac{\chi^2}{289} - \frac{2\gamma^2}{289}
+\frac{50276\chi}{289} - \frac{8554\gamma}{289}
- \frac{3\chi-15}{4\gamma+116} +
6\chi\gamma-\frac{253087}{289} = 60
$$
Since $\gamma=\chi$ we can subtitute one for another, to avoid confusion I will now use $\lambda=\gamma=\chi$. This also
reduces the equation to $\lambda=\lambda$ which reduces this to single equality.
$$
\frac{1733\lambda^2}{289} + \frac{41722\lambda}{289}-\frac{3\lambda-15}{4\lambda+116} =
\frac{270427}{289}
$$
I'm tired of 289
$$
1 733\lambda^2 + 41 722\lambda-\frac{867\lambda-4 335}{4\lambda+116} =
270 427
$$
Multiply with $4\lambda+116$
$$
6 932\lambda^3+367 916\lambda^2+3 757 177\lambda-31 373 867=0
$$
Divide with $6 932$
$$
\lambda^3+\frac{91 979\lambda^2}{1 733}+\frac{3 757 177\lambda}{6 932}-\frac{31 373 867}{6 932} = 0
$$
Subtitute $\lambda=v-\frac{91 979}{5 199}$
$$
\left(v-\frac{91 979}{5 199}\right)^3+\frac{91 979\left(v-\frac{91 979}{5 199}\right)^2}{1 733}+\frac{3 757 177
\left(v-\frac{91 979}{5 199}\right)}{6 932}-\frac{31 373 867}{6 932} = 0
$$
Expand this and divide with $36 039 468$
$$
v^3 - \frac{14 306 982 541}{36 039 468}v - \frac{427 215 759 480 560}{140 526 895 599} = 0
$$
A wild large numbers appear.
Darksonn used variables, it's super effective.
$$p=-\frac{14 306 982 541}{36 039 468}$$
$$q=-\frac{427 215 759 480 560}{140 526 895 599}$$
$$
v^3 + pv + q=0
$$
Perform the substitution $v=w-\frac p{3w}$
$$
\left(w-\frac p{3w}\right)^3+pw-\frac{p^2}{3w}+q=0
$$
Expand the equation
$$
w^3 - \frac{p^3}{27w^3} + q = 0
$$
Let $u=w^3$ and multiply by $u$
$$
u^2 + qu - \frac{p^3}{27} = 0
$$
We pick one of the roots, in the end it dosen't matter which one. If you don't believe me, try yourself.
$$
u=\frac1{18}\left(\sqrt 3\cdot \sqrt{4p^3+27q^2} - 9q\right)
$$
Substitute back $w^3=u$
$$
w^3=\frac1{18}\left(\sqrt 3\cdot \sqrt{4p^3+27q^2} - 9q\right)
$$
Take the three square roots
$$
w_1=-\frac{\sqrt[3]{\sqrt{12p^3+81q^2} - 9q}}{\sqrt[3]{2} \cdot 3^{2/3}}
$$
$$
w_2=\frac{\sqrt[3]{\sqrt{12p^3+81q^2} - 9q}}{\sqrt[3]{2} \cdot 3^{2/3}}
$$
$$
w_3=\frac{(-1)^{2/3}\cdot \sqrt[3]{\sqrt{12p^3+81q^2} - 9q}}{\sqrt[3]{2} \cdot 3^{2/3}}
$$
In the following, the symbol $w$ denotes any of the $3$ values above
We wan't to invert $v=w_?-\frac 9{3w_?}$, so we get
$$
w=\frac12\cdot\!\left(v\pm\sqrt{v^2+12}\right)
$$
This is also written as
$$
v=\frac{w^2-3}w
$$
We know that $v=\lambda+\frac{91979}{5199}$
$$
\lambda=\frac{w^2-3}w-\frac{91979}{5199}
$$
Substitute in for $w,p,q$
$$
\lambda=\frac{\left(3^{\frac{1}{3}} 2^{\frac{2}{3}} {\left(9 \cdot 3^{\frac{1}{3}} 2^{\frac{2}{3}} - {\left(\frac{3}{12013156} \,
\sqrt{3} \sqrt{-11345297051245155823} + \frac{427215759480560}{15614099511}\right)}^{\frac{2}{3}}\right)}\right)}{6 \,
{\left(\frac{3}{12013156} \, \sqrt{3} \sqrt{-11345297051245155823} +
\frac{427215759480560}{15614099511}\right)}^{\frac{1}{3}}} - \frac{91979}{5199}
$$
$$
\lambda=\frac{\left(3^{\frac{1}{6}} 2^{\frac{1}{3}} \\{\left(3^{\frac{2}{3}} 2^{\frac{1}{3}} {\left(15597 \,
\sqrt{-34035891153735467469} + 1708863037922240\right)}^{2} - 70214429819350206466848\right)}\right)}{374738388264 \,
{\left(15597 \, \sqrt{-34035891153735467469} + 1708863037922240\right)}} - \frac{91979}{5199}
$$
$$
\lambda=\frac{\left(3^{\frac{1}{6}} 2^{\frac{1}{3}} {\left(3^{\frac{2}{3}} 2^{\frac{1}{3}} {\left(15597 \,
\sqrt{-34035891153735467469} + 1708863037922240\right)}^{2} - 70214429819350206466848\right)}\right)}{374738388264 \,
{\left(15597 \, \sqrt{-34035891153735467469} + 1708863037922240\right)}} - \frac{91979}{5199}
$$
At this point these values become so ugly they don't even fit on the answer area, so I'll leave doing the last simple substitution as an exercise for the reader.