I am using the pracma package, which contains the function nullspace(), returning normalized basis vectors of the Null(A):
> require(pracma)
> (A = matrix(c(1,2,3,4,5,6), nrow=2, byrow=T))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> nullspace(A)
[,1]
[1,] 0.4082483
[2,] -0.8164966
[3,] 0.4082483
which is perfectly fine. However (don't ask), I want to quickly check the values I'd get if I were to produce the reduced row echelon form:
> rref(A)
[,1] [,2] [,3]
[1,] 1 0 -1
[2,] 0 1 2
and from there "manually" figure out the null space as
N(A) = [1, -2, 1]'
Yes, the latter is a scalar multiple of the former:
> c(1,-2,1)/nullspace(A)
[,1]
[1,] 2.44949
[2,] 2.44949
[3,] 2.44949
but I'd still like to get the latter, non-normalized form of a basis of the null space, as though the values were directly obtained from the reduced row echelon matrix.