During resolution of an overload of a templated member function of a base class, I observed a different behaviour between g++ (5.2.1-23) and clang (3.8.0), with -std=c++14.
#include <iostream>
#include <type_traits>
struct Base
{
template <typename T>
auto a(T t) -> void {
std::cout<< "False\n";
}
};
template <bool Bool>
struct Derived : public Base
{
using Base::a;
template <typename T, bool B = Bool>
auto a(T t) -> std::enable_if_t<B, void>
{
std::cout<< "True\n";
}
};
int main()
{
Derived<true> d;
d.a(1); // fails with g++, prints "true" with clang
Derived<false> d2;
d2.a(1); // fails with clang++, prints "false" with g++
}
The call to Derived<true>::a fails with g++ with the following message:
test.cc: In function ‘int main()’:
test.cc:28:8: error: call of overloaded ‘a(int)’ is ambiguous
d.a(1);
^
test.cc:18:8: note: candidate: std::enable_if_t<B, void> Derived<Bool>::a(T) [with T = int; bool B = true; bool Bool = true; std::enable_if_t<B, void> = void]
auto a(T t) -> std::enable_if_t<B, void>
^
test.cc:7:8: note: candidate: void Base::a(T) [with T = int]
auto a(T t) -> void {
^
and the call to Derived<false>::a fails with clang++ with the following message:
test.cc:32:6: error: no matching member function for call to 'a'
d2.a(1);
~~~^
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.2.1/../../../../include/c++/5.2.1/type_traits:2388:44: note: candidate template ignored: disabled by 'enable_if' [with T = int, B = false]
using enable_if_t = typename enable_if<_Cond, _Tp>::type;
^
My guess is that they interpret differently the using Base::a;, and that it isn't considered in clang, whereas it's (maybe too much) considered in g++. What I thought would happen is that if Derived has true as parameter, then the call of a() is dispatched to Derived's implementation, whereas if the parameter is false, the call is dispatched to Base::a.
Are they both wrong? Who is right? Who should I submit a bug report to? Can somebody explain what is going on?
Thanks