I have the following code:
r = numpy.zeros(shape = (width, height, 9))
It creates a width x height x 9 matrix filled with zeros. Instead, I'd like to know if there's a function or way to initialize them instead to NaNs in an easy way.
I have the following code:
r = numpy.zeros(shape = (width, height, 9))
It creates a width x height x 9 matrix filled with zeros. Instead, I'd like to know if there's a function or way to initialize them instead to NaNs in an easy way.
You rarely need loops for vector operations in numpy. You can create an uninitialized array and assign to all entries at once:
>>> a = numpy.empty((3,3,))
>>> a[:] = numpy.nan
>>> a
array([[ NaN, NaN, NaN],
[ NaN, NaN, NaN],
[ NaN, NaN, NaN]])
I have timed the alternatives a[:] = numpy.nan here and a.fill(numpy.nan) as posted by Blaenk:
$ python -mtimeit "import numpy as np; a = np.empty((100,100));" "a.fill(np.nan)"
10000 loops, best of 3: 54.3 usec per loop
$ python -mtimeit "import numpy as np; a = np.empty((100,100));" "a[:] = np.nan"
10000 loops, best of 3: 88.8 usec per loop
The timings show a preference for ndarray.fill(..) as the faster alternative. OTOH, I like numpy's convenience implementation where you can assign values to whole slices at the time, the code's intention is very clear.
Note that ndarray.fill performs its operation in-place, so numpy.empty((3,3,)).fill(numpy.nan) will instead return None.
Another option is to use numpy.full, an option available in NumPy 1.8+
a = np.full([height, width, 9], np.nan)
This is pretty flexible and you can fill it with any other number that you want.
I compared the suggested alternatives for speed and found that, for large enough vectors/matrices to fill, all alternatives except val * ones and array(n * [val]) are equally fast.
Code to reproduce the plot:
import numpy
import perfplot
val = 42.0
def fill(n):
a = numpy.empty(n)
a.fill(val)
return a
def colon(n):
a = numpy.empty(n)
a[:] = val
return a
def full(n):
return numpy.full(n, val)
def ones_times(n):
return val * numpy.ones(n)
def list(n):
return numpy.array(n * [val])
b = perfplot.bench(
setup=lambda n: n,
kernels=[fill, colon, full, ones_times, list],
n_range=[2 ** k for k in range(20)],
xlabel="len(a)",
)
b.save("out.png")
Are you familiar with numpy.nan?
You can create your own method such as:
def nans(shape, dtype=float):
a = numpy.empty(shape, dtype)
a.fill(numpy.nan)
return a
Then
nans([3,4])
would output
array([[ NaN, NaN, NaN, NaN],
[ NaN, NaN, NaN, NaN],
[ NaN, NaN, NaN, NaN]])
I found this code in a mailing list thread.
You can always use multiplication if you don't immediately recall the .empty or .full methods:
>>> np.nan * np.ones(shape=(3,2))
array([[ nan, nan],
[ nan, nan],
[ nan, nan]])
Of course it works with any other numerical value as well:
>>> 42 * np.ones(shape=(3,2))
array([[ 42, 42],
[ 42, 42],
[ 42, 42]])
But the @u0b34a0f6ae's accepted answer is 3x faster (CPU cycles, not brain cycles to remember numpy syntax ;):
$ python -mtimeit "import numpy as np; X = np.empty((100,100));" "X[:] = np.nan;"
100000 loops, best of 3: 8.9 usec per loop
(predict)laneh@predict:~/src/predict/predict/webapp$ master
$ python -mtimeit "import numpy as np; X = np.ones((100,100));" "X *= np.nan;"
10000 loops, best of 3: 24.9 usec per loop
Yet another possibility not yet mentioned here is to use NumPy tile:
a = numpy.tile(numpy.nan, (3, 3))
Also gives
array([[ NaN, NaN, NaN],
[ NaN, NaN, NaN],
[ NaN, NaN, NaN]])
update:
I did a speed comparison, and it's not very fast :/ It's slower than the ones_times by a decimal.
As said, numpy.empty() is the way to go. However, for objects, fill() might not do exactly what you think it does:
In[36]: a = numpy.empty(5,dtype=object)
In[37]: a.fill([])
In[38]: a
Out[38]: array([[], [], [], [], []], dtype=object)
In[39]: a[0].append(4)
In[40]: a
Out[40]: array([[4], [4], [4], [4], [4]], dtype=object)
One way around can be e.g.:
In[41]: a = numpy.empty(5,dtype=object)
In[42]: a[:]= [ [] for x in range(5)]
In[43]: a[0].append(4)
In[44]: a
Out[44]: array([[4], [], [], [], []], dtype=object)
Another alternative is numpy.broadcast_to(val,n) which returns in constant time regardless of the size and is also the most memory efficient (it returns a view of the repeated element). The caveat is that the returned value is read-only.
Below is a comparison of the performances of all the other methods that have been proposed using the same benchmark as in Nico Schlömer's answer.
Just a warning that initializing with np.empty() without subsequently editing the values can lead to (memory allocation?) problems:
arr1 = np.empty(96)
arr2 = np.empty(96)
print(arr1)
print(arr2)
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 1. 1.
# 1. 1. 2. 2. 2. 2. nan nan nan nan nan nan nan nan 0. 0. 0. 0.
# 0. 0. 0. 0. nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan]
#
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan 1. 1.
# 1. 1. 2. 2. 2. 2. nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan]
The floats initialized in the array are used somewhere else in my script but are not associated with variables arr1 or arr2 at all. Spooky.
Answer from user @JHBonarius solved this problem:
arr = np.tile(np.nan, 96)
print(arr)
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
# nan nan nan nan nan nan]
>>> width = 2
>>> height = 3
>>> r = np.full((width, height, 9), np.nan)
>>> print(r)
array([[[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan]],
[[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan]]])
>>> r.shape
(2, 3, 9)
Pardon my tardiness, but here is the fastest solution for large arrays, iff single-precision (f4 float32) is all you need. And yes, np.nan works as well.
def full_single_prec(n):
return numpy.full(n, val, dtype='f4')