An interesting problem: For $a,b>0$, show that
$$\int_0^{\frac{\pi}{2}}\ln(a^2\cos^2 x+b^2\sin^2 x) dx=\pi\ln\left(\frac{a+b}{2}\right)$$
Link here: Evaluate integral: $\int_0^{\frac{\pi}{2}}\ln(a^2\cos^2 x +b^2\sin^2x)dx$?
An interesting problem: For $a,b>0$, show that
$$\int_0^{\frac{\pi}{2}}\ln(a^2\cos^2 x+b^2\sin^2 x) dx=\pi\ln\left(\frac{a+b}{2}\right)$$
Link here: Evaluate integral: $\int_0^{\frac{\pi}{2}}\ln(a^2\cos^2 x +b^2\sin^2x)dx$?