
So it seems that all complex exponential functions are multivalued except for ones with base $e$. Why? Shouldn't all exponentials be multivalued?

So it seems that all complex exponential functions are multivalued except for ones with base $e$. Why? Shouldn't all exponentials be multivalued?
So it seems that all complex exponential functions are multivalued except for ones with base $e$. Why? Shouldn't all exponentials be multivalued?
Except when the exponent is an integer. Yes, but there is a very strong convention, that $e^z$ always means
$$\exp(z) := \sum_{n=0}^\infty \frac{z^n}{n!}$$
and no other value of $w\mapsto w^z$ evaluated at $w = e$. That convention should however be explicitly introduced lest it lead to confusion if it is tacitly used.