3

Now, I was solving a this problem. It asks for summation of $$\sum\limits_{k =0}^\infty\dfrac{1}{{n+k \choose n}}$$ I solved it using this answer, the answer turns out to be $$\dfrac{n}{n-1}$$ However, can someone provide an explanation of how to go about proving this?

Note: The answer is public, although the contest hasn't ended yet. If this is against the site policy, then moderators can block the question right now and unblock after one hour (which is when the contest ends).

taninamdar
  • 2,662

4 Answers4

1

Here is a calculation using a different integral for the beta function, also very simple. Suppose we seek to evaluate $$\sum_{n\ge 0} {n+q\choose q}^{-1}.$$

This is $$\sum_{n\ge 0} \frac{q! \times n!}{(n+q)!} = \sum_{n\ge 0} \frac{\Gamma(q+1) \times \Gamma(n+1)}{\Gamma(n+q+1)} \\ = \sum_{n\ge 0} (n+q+1) \frac{\Gamma(q+1) \times \Gamma(n+1)}{\Gamma(n+q+2)} = \sum_{n\ge 0} (n+q+1) \mathrm{B}(q+1, n+1).$$

Recall the beta function integral $$\mathrm{B}(x,y) = \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+y}} dt.$$

This gives for the sum the representation $$\int_0^\infty \sum_{n\ge 0} (n+q+1) \frac{t^{q}}{(1+t)^{n+q+2}} dt = \int_0^\infty \frac{t^q}{(1+t)^{q+2}} \sum_{n\ge 0} (n+q+1) \frac{1}{(1+t)^n} dt \\ = \int_0^\infty \frac{t^q}{(1+t)^{q+2}} \frac{1+t}{t^2} dt + (q+1) \int_0^\infty \frac{t^q}{(1+t)^{q+2}} \frac{1+t}{t} dt \\ = \int_0^\infty \frac{t^{q-2}}{(1+t)^{q+1}} dt + (q+1) \int_0^\infty \frac{t^{q-1}}{(1+t)^{q+1}} dt.$$

Converting back from the beta functions that have appeared we get $$\mathrm{B}(q-1, 2) + (q+1) \mathrm{B}(q, 1) = \frac{\Gamma(q-1)\Gamma(2)}{\Gamma(q+1)} + (q+1) \frac{\Gamma(q)\Gamma(1)}{\Gamma(q+1)} \\ = \frac{1}{q(q-1)} + (q+1)\frac{1}{q} = \frac{q}{q-1}.$$

Marko Riedel
  • 64,728
1

\begin{align}\sum^{\infty}_{k=0}\frac{1}{n+k\choose n}=\sum^{\infty}_{k=0}\frac{k!\cdot n!}{(n+k)!}&=\sum^{\infty}_{k=0}\frac{\Gamma{(n+1)}\cdot \Gamma{(k+1)}}{\Gamma(n+k+2)}\cdot (n+k+1)\\&=\sum^{\infty}_{k=0}(n+k+1)\cdot B(n+1,k+1)\end{align} Where $B(x,y)$ is the Beta function defined as $$B(x,y)=\int^{1}_{0}u^{x-1}(1-u)^{y-1}\,du$$ where $x,y>0$. So we can rewrite the last result as \begin{align}\sum^{\infty}_{k=0}(n+k+1)\cdot B(n+1,k+1)&=(n+1)\sum^{\infty}_{k=0}B(n+1,k+1)+\sum^{\infty}_{k=0}kB(n+1,k+1)\\ &=(n+1)\sum^{\infty}_{k=0}\int^{1}_{0}u^{k}(1-u)^{n}\,du+\sum^{\infty}_{k=0}k\int^{1}_{0}u^{k}(1-u)^{n}\,du\\ &=(n+1)\int^{1}_{0}(\sum^{\infty}_{k=0}u^{k})(1-u)^{n}\,du+\int^{1}_{0}u(\sum^{\infty}_{k=1}ku^{k-1})(1-u)^{n}\,du\\& =(n+1)\int^{1}_{0}\frac{1}{1-u}(1-u)^{n}\,du+\int^{1}_{0}u\frac{1}{(1-u)^2}(1-u)^{n}\,du\\& =(n+1)\frac{1}{n}+B(2,n-1)\\& =\frac{n+1}{n}+\frac{1}{n(n-1)}\\& =\frac{(n+1)(n-1)+1}{n(n-1)}\\& =\frac{n^2-1+1}{n(n-1)}=\frac{n}{n-1}\end{align}

Arian
  • 6,449
0

Let U(n,k) be the term of your series.

You can prove that $U(n,k)=\frac{1}{(1+\frac{n}{1})...(1+\frac{n}{k})}$

you have: $U(n,k) = U(n,k-1)*\frac{k}{n+k} $

Then let $V(n,k) = k*U(n,k)$

You can prove that : $n*U(n,k) -U(n,k-1) = V(n,k) - V(n,k-1)$

Let $S(n,N)$ be the partial sum of the $U(n,k)$:

$S(n,N) = \sum_{k=0}^N U(n,k) = \sum\limits_{k =0}^N\dfrac{1}{{n+k \choose n}} $

By summing the relation (on the index k, from 1 to N) above you get:

$(n-1)*S(n,N) = n + V(n,N) - U(n,N)$

$U(n,N) \rightarrow 0$ ; $V(n,N) \rightarrow 0$ , when $ N \rightarrow \infty$

So you get: $L = \frac{n}{n-1} $

mvggz
  • 1,985
0

You could evaluate it using the Gauss hypergeometric Function $_2F_1$. We have: $$ _2F_1(a,b,c;z)=\sum_{k=0}^{\infty}\frac{\Gamma(a+k)\Gamma(b+k)\Gamma({c})}{\Gamma(a)\Gamma(b)\Gamma(c+k)\Gamma(k+1)}\cdot z^k $$ And: $$ _2F_1(a,b,c;1)=\sum_{k=0}^{\infty}\frac{\Gamma(a+k)\Gamma(b+k)\Gamma({c})}{\Gamma(a)\Gamma(b)\Gamma(c+k)\Gamma(k+1)}=\frac{\Gamma({c})\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} $$ Rewriting your sum yields: $$ \sum_{k=0}^{\infty} \frac{1}{\binom{n+k}{n}}=\sum_{k=0}^{\infty} \frac{n!\cdot k!}{(n+k)!}=\sum_{k=0}^{\infty} \frac{\Gamma(n+1)\Gamma(k+1)}{\Gamma(n+k+1)}=\sum_{k=0}^{\infty} \frac{n!\cdot k!}{(n+k)!}=\sum_{k=0}^{\infty} \frac{\Gamma(k+1)\Gamma(k+1)\Gamma(n+1)}{\Gamma(1)\Gamma(1)\Gamma(n+k+1)\Gamma(k+1)}=_2F_1(1,1,n+1;1)=\frac{\Gamma({n+1})\Gamma(n+1-1-1)}{\Gamma(n+1-1)\Gamma(n+1-1)}=\frac{\Gamma({n+1})\Gamma(n-1)}{\Gamma(n)\Gamma(n)}=\frac{n\Gamma({n})\Gamma(n-1)}{\Gamma(n)\cdot n\Gamma(n-1)}=\frac{n}{n-1} $$