I'm trying to find all conjugacy classes in $SU_2$.
Matrices in $SU_2$ are of the form:
$M = \begin{bmatrix} \alpha & \beta \\ - \bar{\beta} & \bar{\alpha} \end{bmatrix}$ and $|\alpha|^2+|\beta|^2 =1$
I thought I could use Jordan decomposition to do this and here's what I've got so far:
$W(M) = X^2 - trM \cdot X + \det M = X^2 - (\alpha + \bar{\alpha})X + 1$
so the eigenvalues are: $\lambda_{1} = \frac{\alpha + \bar{\alpha} + \sqrt{(\alpha + \bar{\alpha})^2 +4}}{2}, \ \ \lambda_{2} = \frac{\alpha + \bar{\alpha} - \sqrt{(\alpha + \bar{\alpha})^2 +4}}{2}$.
1) $\lambda_1 \neq \lambda_2$ if $(\alpha + \bar{\alpha})^2 \neq 4, \ \ \alpha = a+bi, \ \ a \neq \sqrt{2}, - \sqrt{2} $
and then $M$ is diagonizable and $M = S\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} S^{-1}$
2) a) if $\beta=0, (\alpha + \bar{\alpha})^2 = 4$, then $M$ is diagonal
b) if $\beta=0, (\alpha + \bar{\alpha})^2 \neq 4$, then $M$ is not diagonizable and $M = S\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} S^{-1}$
But in order to find conjugacy classes I need those $S \in SU_2$ and I don't know what to do next. Maybe there's a better way to approach this problem?
I'll be grateful for all your help.
Update:
If we let $S = \begin{bmatrix} x & y \\ - \bar{y} & \bar{x} \end{bmatrix} $
then in case 1) $SMS^{-1} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ and after multiplying those matrices I got these four equations:
$\bar{xy}(\bar{\alpha} - \alpha) + \bar{\beta} (\bar{x})^2 + \beta (\bar{y})^2=0$
$xy(\bar{\alpha} - \alpha) + \beta x^2 + \beta y^2=0$
$\bar{\alpha} y \bar{y} + \alpha x \bar{x} + \beta \bar{y} x - \bar{\beta} y \bar{x} = \lambda_1$
$\bar{\alpha} y \bar{y} + \alpha x \bar{x} - \beta \bar{y} x + \bar{\beta} y \bar{x} = \lambda_2$.
Could those equations be helpful?