I have a positive deifnite, symmetrical, $N\times N$ real matrix $A$ which has 1's on the diagonal and all off-diagonal elements positive and $<1$. Let $A=LL^t$ be the Cholesky decomposition of $A$. Suppose now that I extend $A$ as follows: $$\left( \begin{array}{cc} A & a \\ a^t & 1 \end{array} \right)$$ where $a$ is a $N\times1$ real vector with positive elements $<1$. Thus the extended matrix has the same structure as the original matrix $A$. I would like to prove that the Cholesky factor of the extended matrix has the form $$\left( \begin{array}{cc} L & 0 \\ c^t & d \end{array} \right)$$ where $L$ is, again, the Cholesky factor of $A$, $c$ an appropriate $N\times 1$ real vector, and $d$ an appropriate scalar, positive or 0.
By definition of Cholesky factor, the following should hold: $$\left( \begin{array}{cc} A & a \\ a^t & 1 \end{array} \right) = \left( \begin{array}{cc} L & 0 \\ c^t & d \end{array} \right) \left( \begin{array}{cc} L^t & c \\ 0 & d \end{array} \right) = \left( \begin{array}{cc} LL^t & Lc \\ L^tc^t & c^t c + d^2 \end{array} \right)$$ where I just carried out the matrix product. This is promising, and means that we have to prove that we can choose $c$ and $d$ so that these two statements hold: $$a=Lc$$ $$1=c^tc+d^2$$ The first is easy because $L$ is invertible: $$c=L^{-1}a$$ Then second equation becomes $$1=a^t(L^{-1})^tL^{-1}a+d^2$$ or $$1=a^tA^{-1}a+d^2$$ or $$d=\sqrt{1 - a^tA^{-1}a }$$ which gives a real $d$ so long as $a^t A^{-1} a<1$, but I am not sure one can prove this. If that helps, the entries of $A$ and inner products of unit vectors. I have not been able to find numerical counterexamples, but the elements of $a$ are not necessarily small and in the worst case its norm is close to $N$. Is there something about the norm of $A^{-1}$ or of $L^-1$ that can help me out here?
Thanks, Stefano