You need to think just a little bit outside the box for this one and not bruteforce your way through to a solution. The first thing that jumped at me was the $\sqrt{1+k^2}$, which made me think that either the hyperbolic sine and cosine are going to be useful here, or it's the tangent and secant. The latter was the right approach.
First, two elementary lemmas we'll use:
Lemma 1: $\displaystyle \tan{x}+\sec{x}=\tan{\left( \frac{x}{2}+\frac{\pi}{4}\right)}$
Lemma 2: $\displaystyle \sum_{i=1}^n 2^{-i}=1-2^{-n}$
Now, we have:
- $k_0=\tan{0}=0$
- $k_1=\tan{0}+\sqrt{1+\tan{0}^2}=\tan{0}+|\sec{0}|=\tan{0}+\sec{0}= \tan{(0/2+\pi/4)}$
- $k_2=\tan{\pi/4}+\sec{\pi/4}=\tan{\left(\frac{\pi}{2}\left(\frac{1}{2}+\frac{1}{4} \right)\right)}$
- ...
- $k_n=\tan{\left(\frac{\pi}{2}\left(\frac{1}{2}+\frac{1}{4} \cdots \frac{1}{2^n} \right)\right)}=\tan{\left(\frac{\pi}{2}\left(1-2^{-n} \right)\right)}$
The general form above is only true because for $0 \leq x < \pi/2$, we have $|\sec{x}|=\sec{x}$.
So now, we calculate our limit:
\begin{eqnarray*}
\displaystyle \lim_{n\to \infty} \frac{k_n}{2^n} &=& \lim_{n\to \infty} 2^{-n} \tan{\left(\frac{\pi}{2}\left(1-2^{-n} \right)\right)} \\ &=& \lim_{x\to 0} x \tan{\left(\frac{\pi}{2}\left(1-x \right)\right)}\\
&=& \left( \lim_{x\to 0} \sin{\frac{\pi}{2}(1-x)} \right) \cdot \left( \lim_{x\to 0} \frac{x}{\cos{\frac{\pi}{2}(1-x)}} \right)\\
&=& 1 \cdot \lim_{x\to 0} \frac{\frac{\mathrm{d}}{\mathrm{d} x}x}{\frac{\mathrm{d}}{\mathrm{d} x}\cos{\frac{\pi}{2}(1-x)}} \\
&=& \lim_{x\to 0} \frac{1}{\frac{\pi}{2} \sin{\frac{\pi}{2}(1-x)}}\\
&=& \frac{1}{\frac{\pi}{2} \sin{\frac{\pi}{2}(1-0)}}\\&=& \boxed{\frac{2}{\pi}}
\end{eqnarray*}
And of course, the fourth equality is justified by l'Hôpital's rule.
So finally, $\displaystyle \lim_{n \to \infty} \frac{k_n}{2^n}=\frac{2}{\pi}$ .