Let $f:(a,b)\rightarrow \mathbb{R}$.
$f$ satisfied the following property:
If $\forall x_{1},x_{0},x_{2}\in(a,b)$ and $x_{1}<x_{0}<x_{2};$then$\frac{f(x_{0})-f(x_{1})}{x_{0}-x_{1}}\geq \frac{f(x_{2})-f(x_{0})}{x_{2}-x_{0}}.$
My question : whether the function $f\in C((a,b))?$
We can get $\displaystyle\frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}\geq \frac{f(x_{2})-f(x_{0})}{x_{2}-x_{0}}. $Let $\displaystyle g(x)=\frac{f(x)-f(x_{0})}{x-x_{0}},$ if we can prove $g(x)$ is bound and decreasing (not strictly ) in $(x_{0}-\delta ,x_{0});$ then we have $f^{'}_{-}(x_{0}) $ exists .In a similar way ,$f^{'}_{+}(x_{0}) $ exists. $f^{'}_{-}(x_{0}) $ exists $\Rightarrow\displaystyle\lim_{x\rightarrow x_{0}-}f(x)=f(x_{0});$ $f^{'}_{+}(x_{0}) $ exists $\Rightarrow\displaystyle\lim_{x\rightarrow x_{0}+}f(x)=f(x_{0}).$ Obviously, $f$ is coutinuous at $x=x_{0}.$Further, $f\in C((a,b))!$
But I failed to prove $g(x)$ is bound and decreasing (not strictly ) in $(x_{0}-\delta ,x_{0}).$Sometimes I doubt the conculsion that $f\in C((a,b)).$ Either make a counterexample to deny it ,or prove the conculsion is correct?