I am using the Euclidean Algorithm (EA) for proof. Let $a>b$ and by EA we have
$$ \begin{align} a=q_0 b+r_1 & & & \text{where }0\leq r_{1}<b \\ b=q_1 r_1+r_2 & & & \text{where }0\leq r_2<r_1 \\ \vdots & & & \vdots \\ r_{n}=q_{n+1}r_{n+1}+r_{n+2} & & & \text{where } 0\leq r_{n+1}<r_{n+2} \\ r_{n+1}=q_{n+2}r_{n+2} \end{align} $$
where $ r_{n+2}=1$ beacuse the $\gcd(a,b)=1$. Now for $a^2$ we have
$$\hspace{30pt} a^2=q_{0}^\prime b + r_{1}^\prime\hspace{70pt}\text{where }0\leq r_{1}^\prime<b$$
Here I stuck and don't know to continue the prove because the value of $r_{1}$ is not necessarily to be equal to $r_{1}^\prime$