My homework is asking me to answer problems such as the one that follows:
Find all values of $h$ such that the vectors $\{a_1, a_2\}$ span $\mathbb{R}^2$, where $a_1 = (2, 4)$ and $a_2 = (h, 6)$.
I created an augmented matrix \begin{pmatrix} 2 & h\\ 4 & 6\\ \end{pmatrix} and used elementary row operations to put the matrix in the form \begin{pmatrix} 1 & h/2\\ 0 & 6-2h\\ \end{pmatrix} The answer to the problem is $h \neq 3$. Obviously, $0 = 6 - 2h$ is true when $h = 3$. However, I don't understand why h can be any value except for that value that makes that equation true.