In this solution I use complex numbers to fast track the sum of angles identities, but I still use a significant amount of trigonometry, so I'm not sure if this is what you were looking for.
Instead of finding $p=\sin 10\sin 20\sin 30\sin 40\sin 50\sin 60\sin 70\sin 80$ directly, instead let's try to find $p^2$
$$\begin{array}{lll}
p^2&=&p\cdot p\\
&=&p\cdot (\sin 10\sin 20\sin 30\sin 40\sin 50\sin 60\sin 70\sin 80)\\
&=&p\cdot (\sin 170\sin 160\sin 150\sin 140\sin 130\sin 120\sin 110\sin 100)\\
&=&p\cdot 1\cdot (\sin 170\sin 160\sin 150\sin 140\sin 130\sin 120\sin 110\sin 100)\\
&=&p\cdot \sin 90\cdot (\sin 170\sin 160\sin 150\sin 140\sin 130\sin 120\sin 110\sin 100)\\
&=&\sin 10\sin 20\sin 30\dots\sin 90\dots\sin150\sin160\sin170
\end{array}$$
Next, consider the following polynomial $x(x-1)P(x)$
$$\begin{array}{lll}
x(x-1)P(x)&=&(x-\sin 0)(x-\sin 10)\dots(x-\sin 90)\dots(x-\sin 160)(x-\sin 170)\\
x(x-1)P(x)&=&x(x-1)(x-\sin 10)\dots(x-\sin 80)(x-\sin 100)\dots(x-\sin 170)\\
P(x)&=&(x-\sin 10)\dots(x-\sin 80)(x-\sin 100)\dots(x-\sin 170)\\
P(x)&=&x^{16}+x(\dots)-\sin10\sin20\dots\sin160\sin170\\
P(x)&=&x^{16}+x(\dots)-p^2
\end{array}$$
Additionally, consider
$$e^{(18t)i}=(e^{ti})^{18}$$
$$\begin{array}{lll}
\cos18t+i\sin18t &=& (\cos t+i\sin t)^{18}\\
&=& \sum_{k=0}^{17}\binom{18}{k}\cos^{18-k}t(i\sin t)^k\\
\text{Im}(\cos18t+i\sin18t)&=&\text{Im}\bigg( \sum_{k=0}^{17}\binom{18}{k}\cos^{18-k}t(i\sin t)^k\bigg)\\
\sin18t&=& \sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}\cos^{18-k}t\sin^k t\\
\sin18t&=& \cos t\sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}\cos^{17-k}t\sin^{k} t\\
\sin18t&=& \cos t\sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}(\cos^2t)^\frac{17-k}{2}\sin^{k} t\\
\sin18t&=& \cos t\sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}(1-\sin^2t)^\frac{17-k}{2}\sin^{k} t\\
\sin18t&=& \cos t\sin t\sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}(1-\sin^2t)^\frac{17-k}{2}\sin^{k-1} t\\
\end{array}$$
Next, suppose that $\sin 18t = 0,0^\circ\le t\lt 180^\circ$. One possibility is that $\cos t = 0$ (i.e. $t=90^\circ$); another is that $\sin t=0$ (i.e. $t=0^\circ$).
Of particular interest are the roots of
$$f(t) = Q(\sin t)=\sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}(1-\sin^2t)^\frac{17-k}{2}\sin^{k-1} t$$
Because we have already found $2$ of the $18$ roots of $\sin 18t$ ($0^\circ$ and $90^\circ$), the remaining $16$ roots are the zeros of $f$, namely $\{t\mid t=10j, j \in N^{+},j\le 17,j\ne 9\}$. But these are the same roots as those of $P(\sin t)$, so we can infer that $P$ and $Q$ have the same roots and (by the Polynomial Remainder Theorem), because $P$ and $Q$ are both of degree $16$, are linear combinations of one another.
Just to clarify,
$$Q(x)=\sum_{\substack{0\le k\le 17\\k\text{ odd}}}\binom{18}{k}(-1)^{\frac{k-1}{2}}(1-x^2)^\frac{17-k}{2}x^{k-1}$$
and
$$Q(x) = aP(x)$$
We know that the coefficient associated with $P(x)$'s $x^{16}$ term is $1$, so $a$ is identical to the coefficient associated with $Q(x)$'s $x^{16}$ term, namely,
$$a = \binom{18}{1}+\binom{18}{3}+\binom{18}{5}+\binom{18}{7}+\binom{18}{9}+\binom{18}{11}+\binom{18}{13}+\binom{18}{15}+\binom{18}{17}$$
but this is just the binomial expansion of
$$a = \frac{(1+1)^{18} - (1-1)^{18}}{2}=\frac{2^{18}}{2}=2^{17}$$
Thus
$$P(x)\equiv\frac{Q(x)}{2^{17}}$$
Now just considering the constant term of $P(x)$ we have
$$p^2 = \frac{\binom{18}{1}}{2^{17}}=\frac{18}{2^{17}} =\frac{9}{2^{16}}=\frac{3^2}{({2^{8}})^2}=\bigg(\frac{3}{256}\bigg)^2$$
taking the principle square root we have
$$p = \frac{3}{256}$$