Looking for a neat and smart way to solve this.
I am having a tough time with this
Looking for a neat and smart way to solve this.
I am having a tough time with this
We have (we can prove it using the L'Hôpital's rule)
$$(\ln n)^2=o(n^{1/3})$$ so
$$\frac{(\ln n)^2}{n^{3/2}}=o\left(\frac1{n^{\frac32-\frac13}}\right)$$ and since $\frac32-\frac13>1$ we conclude by comparison with a Riemann convergent series that the given series is convergent.
Hint:
Claim 1. $$ \sum \frac{1}{n^\alpha}<\infty,\quad \forall \alpha>1 $$
Claim 2. For any $\beta >0$, $$ \ln n<n^\beta, \quad n\gg 1. $$
You know that there exist such a $N$, that for $n>N$ you have($\varepsilon>0$):
$$\ln n < n^{\varepsilon}$$
So for $n>N$:
$$\frac{(\ln n)^2}{n^{\frac{3}{2}}}<\frac{n^{2 \varepsilon}}{n^{\frac{3}{2}}}=\frac{1}{n^{\frac{3}{2}-2\varepsilon}}$$
If you choose $\varepsilon<\frac{1}{4}$, then $\frac{3}{2}-2\varepsilon>1$, so the series:
$$\sum_{n=1}^{\infty}\frac{1}{n^{\frac{3}{2}-2\varepsilon}}$$
converges, so $\displaystyle \sum_{n=1}^{\infty}\dfrac{(\ln n)^2}{n^{3/2}}$ also converges.
Here is an approach using Cauchy condensation theorem which allows us to consider instead the series
$$ \sum_{n=1}^{\infty} \frac{n^2}{2^{n/2}} $$
which is a convergent series if it is copared with the geometric series $\sum_{n}x^n$ with the condition of convergence $|x|<1$. See related techniques.
Cauchy Condensation Theorem:
For a positive non-increasing sequence $f(n)$, the sum $$ \sum_{n=1}^{\infty}f(n) $$ converges if and only if the sum $$\sum_{n=0}^{\infty} 2^{n}f(2^{n})$$ converges.
well I was trying in this way,we know,$$\forall x\ge1 $$ $$\frac{1}{x}\le\frac{1}{x^\frac{4}{5}}$$so$$\int^n_1\frac{1}{x}dx\le\int^n_1\frac{1}{x^\frac{4}{5}}dx$$i.e.$$log(n)\le 5n^\frac{1}{5}-5<5n^\frac{1}{5}$$$\Rightarrow$$$(log(n))^2<25n^\frac{2}{5}$$$\Rightarrow$$$\frac{(log(n))^2}{n^\frac{3}{2}}<25\frac{1}{n^\frac{11}{10}}$$$\Rightarrow$$$\sum_{n=1}^{\infty}\frac{(log(n))^2}{n^\frac{3}{2}}<\sum_{n=1}^{\infty}25\frac{1}{n^\frac{11}{10}}$$ RHS converges and hence LHS converges $$\sum_{n=1}^{\infty}\frac{1}{n^t}$$converges iff t>1