$$\frac{2}{1^p}\ + \frac{3}{2^p}\ + \frac{4}{3^p}\ +\ldots\,.$$
I can see that the $nth$ term is $\frac{n+1}{n^p}$
How do I test for its convergence?
$$\frac{2}{1^p}\ + \frac{3}{2^p}\ + \frac{4}{3^p}\ +\ldots\,.$$
I can see that the $nth$ term is $\frac{n+1}{n^p}$
How do I test for its convergence?
Hint: $\displaystyle\sum_{n=1}^{\infty}\dfrac{n+1}{n^p} = \sum_{n=1}^{\infty}\left[\dfrac{n}{n^p}+\dfrac{1}{n^p}\right] = \sum_{n=1}^{\infty}\left[\dfrac{1}{n^{p-1}}+\dfrac{1}{n^p}\right]$. Now apply the $p$-test.