How Can I evaluate $\displaystyle \int \sec^3 (x)dx$
(Without Using Weierstrass Substution or Integration by parts.)
$\bf{My\; Try::}$ Let $\displaystyle I = \int\sec^3(x)dx = \int \frac{1}{\cos^3(x)}dx = \int \frac{1}{\sin ^3\left(\frac{\pi}{2}-x\right)}dx$
Now Let $\displaystyle \left(\frac{\pi}{2}-x\right) = t\;,$ Then $\displaystyle dx = -dt$. So $\displaystyle I = -\int \frac{1}{\sin^3 t}dt = -\int\frac{1}{2\sin^3\left(\frac{t}{2}\right)\cdot \cos^3 \left(\frac{t}{2}\right)}dt$
Now How can I solve after that
Help me
Thanks