I am trying to solve $$\int\frac{\sqrt{9-x^2}}{x^2}\mathrm dx$$
My answer is slightly different to the memo:
$x=3\sin\theta\quad\iff\quad\theta=\arcsin\left(\frac x 3\right)\\ \text dx=3\cos\theta\ \text d\theta\\$ $\begin{align}I&=\int\frac{3\sqrt{1-\sin^2\theta}}{3\sin^2\theta}\cdot3\cos\theta\ \text d\theta=3\int\frac{\cos^2\theta}{\sin^2\theta}\ \text d\theta=3\int\cot^2\theta\ \text d \theta\\ &=3\int\csc^2\theta\ \text d\theta - 3\int\text d \theta\\ &=-3\cot\theta-3\theta+C\\ &=-\frac{\sqrt{1-\left(\frac x 3\right)^2}}{\frac x 3}-3\arcsin\left(\frac x 3\right)+C\\ &=-\frac{3\sqrt{9-x^2}}{3x}-3\arcsin\left(\frac x 3\right)+C\\ &=-\frac{\sqrt{9-x^2}}x-3\arcsin\left(\frac x 3\right)+C \end{align}$
and the memo has $$-\frac{\sqrt{9-x^2}}x-\arcsin\left(\frac x 3\right)+C$$
Your help is appreciated!