I am stuck at an exercise in Stein's book: Fourier Analysis, and it's exercise 8 in chapter 4.
Show that for any $a\ne0$, and $\sigma$ with $0<\sigma<1$, the sequence $an^\sigma$ is equidistributed in $[0,1)$.
There are two hints:
$\sum_{n=1}^{N}e^{2\pi ibn^\sigma}-\int_1^Ne^{2\pi ibx^\sigma}dx=O(\sum_{n=1}^{N}n^{-1+\sigma})$
$\sum_{n=1}^{N}e^{2\pi ibn^\sigma}=O(N^\sigma)+O(N^{1-\sigma})$
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Below is my attempt.
$$|\sum_{n=1}^{N}e^{2\pi ibn^\sigma}-\int_1^Ne^{2\pi ibx^\sigma}dx|$$ $$=|\sum_{n=1}^{N-1}\int_n^{n+1}(e^{2\pi ibn^\sigma}-e^{2\pi ibx^\sigma})dx+e^{2\pi ibN^\sigma}|$$ $$\leq\sum_{n=1}^{N-1}\int_n^{n+1}|e^{2\pi ibn^\sigma}-e^{2\pi ibx^\sigma}|dx+1$$ $$\leq2\pi b\sum_{n=1}^{N-1}\int_n^{n+1}|x^\sigma-n^\sigma|dx+1$$ $$\leq2\pi b\sum_{n=1}^{N-1}\int_n^{n+1}|(n+1)^\sigma-n^\sigma|dx+1$$ $$=2\pi bN^\sigma-2\pi b+1$$ $$=O(N^\sigma)$$
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
However my attempt doesn't solve two hints and problem. Can someone prove it following the hints? Thank you.