Let
$$x=\sqrt{a\pm\sqrt{b}}$$
We know that
$$x=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}$$
But, what about cubic root?
Let
$$y=\sqrt[3]{a\pm\sqrt{b}}$$
Is there any formula to find $c$ and $d$ such that $c,d\in\mathbb{Q}$ and $c\pm\sqrt{d}=y$ if $c$ and $d$ exists?
For example, let
$$a=\sqrt[3]{45+\sqrt{1682}}$$
It can be solved factoring terms:
$$a=\sqrt[3]{45+29\sqrt{2}}=\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}=\sqrt[3]{(3+\sqrt{2})^3}=3+\sqrt{2}$$
Is there any formula for cubic root like square root?
- 1,538
-
i think it is usually not the case that there exist such $c,d, \in \mathbb{Q} $ , therefor it might be hard to find such a formula – supinf Aug 14 '14 at 10:44
-
2Does this answer your question? When does $r + \sqrt s$ with $r,s \in \mathbb Q$ have a cubic root of the form $u \pm \sqrt v$ with $u,v \in \mathbb Q$? – Paul Frost Jun 03 '23 at 23:32
5 Answers
Simplifying $\sqrt[3]{a+\sqrt{b}}$. (WLOG. $a>0$.)
$(n+m\sqrt{b})^3=(n^3+3nm^2b)+(3n^2m+m^3)\sqrt{b}.$
$n^3+3nm^2b=a, 3n^2m+m^3=1.$
$n=\sqrt{m^2+\dfrac{1}{3m}}.$
$a=\left(m^2+\dfrac 1 {3m} \right)^{\frac 1 2}\left( m^2(b+1)+\dfrac 1 {3m} \right)$
$a^2=\left( m^2+ \dfrac 1 {3m} \right)\left( m^2(b+1)+\dfrac 1 {3m} \right)^2.$
$27a^2m^3=(3m^3+1)(3m^3(b+1)+1)^2 \\ = 27(b+1)^2\left(m^3\right)^3+9(b+1)(b+1+2)\left(m^3\right)^2+3(2b+3)\left(m^3\right)+1.$
$\Rightarrow m^3=x, 27(b+1)^2x^3+9(b^2+4b+3)x^2+3(2b+3-a^2)x+1=0.$
Solving this 3-dimensional equation,
$\small x=\dfrac{1}{b+1}\left(\dfrac{a\sqrt{4b^3-a^2b^2+18a^2b-4a^4+27a^2}}{23^{\frac 9 2}}-\dfrac{3(b+1)+(a^2-2b-3)(b+3)}{162} - \dfrac{(b+3)^3}{3^6(b+1)^3}\right)^{\frac 1 3}+\dfrac{(b+3)^2-3(a^2-2b-3)}{9(b+1)\left(\dfrac{a\sqrt{4b^3-a^2b^2+18a^2b-4a^4+27a^2}}{23^{\frac 3 2}}-\dfrac{(b+3)^3}{27} + \dfrac{-3(b+1)-(a^2-2b-3)(b+3)}{6}\right)^{\frac 1 3}}-\dfrac{b+3}{3(b+1)}$
...Which doesn't seem clear.
Anyway, $m=x^{\frac 1 3}$
$=\left(\left({{a\,\sqrt{4\,b^3-a^2\,b^2+18\,a^2\,b-4\,a^4+27\,a^2} }\over{2\,3^{{{9}\over{2}}}\,\left(b+1\right)^3}}+{{-{{3}\over{27\,b ^2+54\,b+27}}-{{\left(a^2-2\,b-3\right)\,\left(b+3\right)}\over{ \left(3\,b+3\right)\,\left(9\,b^2+18\,b+9\right)}}}\over{6}}+{{ \left(-1\right)\,\left(b+3\right)^3}\over{27\,\left(3\,b+3\right)^3 }}\right)^{{{1}\over{3}}}-{{{{\left(-1\right)\,\left(b+3\right)^2 }\over{9\,\left(3\,b+3\right)^2}}-{{a^2-2\,b-3}\over{3\,\left(9\,b^2 +18\,b+9\right)}}}\over{\left({{a\,\sqrt{4\,b^3-a^2\,b^2+18\,a^2\,b- 4\,a^4+27\,a^2}}\over{2\,3^{{{9}\over{2}}}\,\left(b+1\right)^3}}+{{- {{3}\over{27\,b^2+54\,b+27}}-{{\left(a^2-2\,b-3\right)\,\left(b+3 \right)}\over{\left(3\,b+3\right)\,\left(9\,b^2+18\,b+9\right)}} }\over{6}}+{{\left(-1\right)\,\left(b+3\right)^3}\over{27\,\left(3\, b+3\right)^3}}\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,\left(b+3 \right)}\over{3\,\left(3\,b+3\right)}}\right)^{\frac 1 3}$
and $n=\sqrt{m^2+\dfrac 1 m}$
$= \left(\left({{a\,\sqrt{4\,b^3-a^2\,b^2+18\,a^2\,b-4\,a^4+27\,a^2} }\over{2\,3^{{{9}\over{2}}}\,\left(b+1\right)^3}}+{{-{{3}\over{27\,b ^2+54\,b+27}}-{{\left(a^2-2\,b-3\right)\,\left(b+3\right)}\over{ \left(3\,b+3\right)\,\left(9\,b^2+18\,b+9\right)}}}\over{6}}+{{ \left(-1\right)\,\left(b+3\right)^3}\over{27\,\left(3\,b+3\right)^3 }}\right)^{{{1}\over{3}}}-{{{{\left(-1\right)\,\left(b+3\right)^2 }\over{9\,\left(3\,b+3\right)^2}}-{{a^2-2\,b-3}\over{3\,\left(9\,b^2 +18\,b+9\right)}}}\over{\left({{a\,\sqrt{4\,b^3-a^2\,b^2+18\,a^2\,b- 4\,a^4+27\,a^2}}\over{2\,3^{{{9}\over{2}}}\,\left(b+1\right)^3}}+{{- {{3}\over{27\,b^2+54\,b+27}}-{{\left(a^2-2\,b-3\right)\,\left(b+3 \right)}\over{\left(3\,b+3\right)\,\left(9\,b^2+18\,b+9\right)}} }\over{6}}+{{\left(-1\right)\,\left(b+3\right)^3}\over{27\,\left(3\, b+3\right)^3}}\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,\left(b+3 \right)}\over{3\,\left(3\,b+3\right)}}\right)^{\frac 2 3}+\left(\left({{a\,\sqrt{4\,b^3-a^2\,b^2+18\,a^2\,b-4\,a^4+27\,a^2} }\over{2\,3^{{{9}\over{2}}}\,\left(b+1\right)^3}}+{{-{{3}\over{27\,b ^2+54\,b+27}}-{{\left(a^2-2\,b-3\right)\,\left(b+3\right)}\over{ \left(3\,b+3\right)\,\left(9\,b^2+18\,b+9\right)}}}\over{6}}+{{ \left(-1\right)\,\left(b+3\right)^3}\over{27\,\left(3\,b+3\right)^3 }}\right)^{{{1}\over{3}}}-{{{{\left(-1\right)\,\left(b+3\right)^2 }\over{9\,\left(3\,b+3\right)^2}}-{{a^2-2\,b-3}\over{3\,\left(9\,b^2 +18\,b+9\right)}}}\over{\left({{a\,\sqrt{4\,b^3-a^2\,b^2+18\,a^2\,b- 4\,a^4+27\,a^2}}\over{2\,3^{{{9}\over{2}}}\,\left(b+1\right)^3}}+{{- {{3}\over{27\,b^2+54\,b+27}}-{{\left(a^2-2\,b-3\right)\,\left(b+3 \right)}\over{\left(3\,b+3\right)\,\left(9\,b^2+18\,b+9\right)}} }\over{6}}+{{\left(-1\right)\,\left(b+3\right)^3}\over{27\,\left(3\, b+3\right)^3}}\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,\left(b+3 \right)}\over{3\,\left(3\,b+3\right)}}\right)^{-\frac 1 3}$
Last comment: Maybe it should be better to try some possible cases, rather than formulizing it.
- 3,389
-
I think your first expansion is wrong, you're lacking the 3s: $(n+m\sqrt b)^3 = n^3 + m^3b\sqrt b + 3nm\sqrt b (n + m \sqrt b)$ – hellofriends Jun 03 '23 at 15:30
-
Alright, then I'll fix $\sqrt[3]{a+\sqrt{b}}$ to $\sqrt[3]{a+3\sqrt{b}}$ to minimize my edits... Sorry for that. – RDK Jun 03 '23 at 15:49
-
I'm afraid the 3 are in the wrong place still, one of them have the $\sqrt b$ and the other doesn't. Sorry. – hellofriends Jun 03 '23 at 15:56
-
-
I'm so very sorry, but the $m^3$ inside of the first parenthesis should be $m^3b$. – hellofriends Jun 04 '23 at 16:44
The cubic-root denesting formula is given by $$\sqrt[3]{a+\sqrt b}=\frac{\sqrt[3]{3p-a}}{2p}\left(p+\sqrt b\right)$$ where $p$ is the root of $p^3-{3a}p^2+3b p-{ab}=0$. For the cited example, $a=45$ and $b=1682$. Solve $$p^3-135 \ p^2+3\cdot 1682\ p-45\cdot1682=0$$ and plug the resulting root $p=87$ into the denesting formula above to arrive at $$\sqrt[3]{45+\sqrt{1682}} =3+\sqrt{2}$$
- 120,125
There isn't a formula for $\sqrt[3]{a\pm\sqrt{b}}$ The best method that I know is simplifying $\sqrt{b}$ (if possible) and assuming that it can be denested into $x+y\sqrt{b}$.
More generally, we have $$\sqrt[m]{A+B\sqrt[n]{C}}=a+b\sqrt[n]{C}$$
- 6,594
$y$ is a real root of a 6th degree polynomial with rational coefficients:
$$y=\sqrt[3]{a\pm\sqrt{b}}$$ $$y^3-a=\pm\sqrt{b}$$ $$y^6-2ay^3+\left(a^2-b\right)=0$$
You would like $y$ to equal $c+\sqrt{d}$, a real root of a quadratic polynomial: $$y=c+\sqrt{d}$$ $$y-c=\sqrt{d}$$ $$y^2-2cy+(c^2-d)=0$$
So it depends on whether the rational factorization of $y^6-2ay^3+\left(a^2-b\right)$ has a quadratic factor. (If it does, then you can directly solve for $c$ using the linear term, and then solve for $d$ using the constant term.)
Degree 6 polynomials do not, in general, have a quadratic factor. But what about this one? It factors over $\mathbb{R}$ as two cubics:
$$\left(y^3-a-\sqrt{b}\right)\left(y^3-a+\sqrt{b}\right)$$
And these cubics factor with one real root and two rotations:
$$\left(y-\sqrt[3]{a+\sqrt{b}}\right)\left(y-\omega\sqrt[3]{a+\sqrt{b}}\right)\left(y-\omega^2\sqrt[3]{a+\sqrt{b}}\right)\left(y-\sqrt[3]{a-\sqrt{b}}\right)\left(y-\omega\sqrt[3]{a-\sqrt{b}}\right)\left(y-\omega^2\sqrt[3]{a-\sqrt{b}}\right)$$
You would like some pair of these factors that includes a real root (so includes either the 1st or 4th factor) to multiply together to make a quadratic with rational coefficients. That is only possible using precisely the 1st and 4th factor.
$$\left(y-\sqrt[3]{a+\sqrt{b}}\right)\left(y-\sqrt[3]{a-\sqrt{b}}\right)=y^2-\left(\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}\right)y+\sqrt[3]{a^2-b}$$
So you have to be in the lucky position that $a^2-b$ has a rational cube root. And furthermore, that $\left(\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}\right)$ is rational. It's unlikely with random $a,b$, but possible every now and then like with $a=7,b=50$.
Your question asks "if $c$ and $d$ exist". So if the two conditions are met in the last paragraph, then yes. You would have:
$$\begin{align} c&=\frac12\left(\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}\right)\\ d&=c^2-\sqrt[3]{a^2-b} \end{align}$$
That is:
$$\sqrt[3]{a+\sqrt{b}}=\frac12\left(\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}\right)+\sqrt{\frac14\left(\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}\right)^2-\sqrt[3]{a^2-b}}$$
- 56,991
-
1"And furthermore, that $\left(\sqrt[3]{a+\sqrt{b}}+\sqrt[3]{a-\sqrt{b}}\right)$ is rational." $;-;$ FWIW a sufficient condition for that to happen is given in my answer here: "a sufficient condition for $,a,b = \sqrt[3]{m \sqrt{p} \pm n\sqrt{q}},$ to denest is for $,m^2 \cdot p - n^2 \cdot q,$ to be the cube of a rational $,r,$, and for the cubic $,p, t'^{,3} - 3r, t' - 2m,$ to have an appropriate rational root, and in that case $,a,b = \frac{1}{2}\left(t',\sqrt{p} \pm \sqrt{t'^{,2} p-4r}\right),$". – dxiv Jun 03 '23 at 23:22
Sonce $1682=841×2=29^2×2$, render
$(x+y\sqrt2)^3=45+29\sqrt2\tag{1}$
where we seek rational values for $a,b$; and its conjugate
$(x-y\sqrt2)^3=45+29\sqrt2\tag{2}$
Their product is
$(x^2-2y^2)^3=45^2-1682=344\implies x^2-2y^2=7$
Now expand the left side of (1) and collect rational terms:
$(x^3+6xy^2)+\sqrt2(3x^2y+2y^3)\tag{3}$
$x^3+6xy^2=45$
$2y^2=x^2-7\implies x^3+3x^3-21x=45$
$4x^3-21x-45=0\overset{\text{seek rational root}}{\implies}x=3$
So $x=3$ and $2y^2=3^2-7=2$. The terms containing $\sqrt2$in (3) imply $y>0$, so $y=+1$.
$\therefore\sqrt[3]{45+\sqrt{1682}}=3+\sqrt2.$
- 48,208
-
Dear Oscar, for the problem with the coprime squares, I just wrote a program to adjust the new number until it is also coprime to each previous square on the list. Forces the numbers to grow quickly; the final step would be a proof that a new square can always be so chosen. Here is output for several successful numbers (each to be squared): 1 \ 7 \ 17 \ 31 \ 151 \ 529 \ 1103 \ 1873 \ 55639 \ 151841 \ 624313 \ 1361777 \ 2364233 \ 3491897 \ 111756529 \ – Will Jagy Jan 21 '25 at 20:05
-
problem at https://math.stackexchange.com/questions/5024726/how-to-solve-this-quadratic-diophantine-equation – Will Jagy Jan 21 '25 at 20:07