If $g \in \Bbb Z_{n^2}^{*}$ and $x_1,x_2 \in \Bbb Z_n$ then help me in proving the following implication.
$g^{n \lambda(n)}\equiv 1 \mod{n^2} \implies g^{(x_1-x_2)\lambda(n)} \equiv 1 \mod{n^2}$
where $\lambda(n)$ is carmichael function.
I know how to prove the left side of the above implication but donno about r.h.s.
You can see it in page #5