For a finite dimensional space, it is straightforward to express any endomorphism as a linear combination of idempotents. For an infinite dimensional space, we can use the fact that $V$ is isomorphic to $V\oplus V$. This follows from the fact that vector spaces are determined up to isomorphism by their dimension, and that $\kappa+\kappa=\kappa$ for any infinite cardinal $\kappa$. So,
$$
\mathrm{dim}(V\oplus V)=\mathrm{dim}(V)+\mathrm{dim}(V)=\mathrm{dim}(V).
$$
So, the algebra, $\mathrm{End}(V)$, of endomorphisms of $V$ is isomorphic to the endomorphisms of $V\oplus V$, which can be identified with the $2\times2$ matrices over $\mathrm{End}(V)$,
$$
\mathrm{End}(V)\cong\mathrm{End}(V\oplus V)\cong\mathrm{M}_2(\mathrm{End}(V)).
$$
First, the traceless matrices can be directly expressed as a linear combination of idempotents.
(I) Any matrix $\left(\begin{matrix}a&b\\c&d\end{matrix}\right)$ in $\mathrm{M}_2(\mathrm{End}(V))$ with $a+d=0$ is a linear combination of idempotents.
Proof: As, $d=-a$, we have
$$
\left(\begin{matrix}a&b\\c&d\end{matrix}\right)=\left(\begin{matrix}a&a\\1-a&1-a\end{matrix}\right)-\left(\begin{matrix}1&a-b\\0&0\end{matrix}\right)+\left(\begin{matrix}1&0\\c+a&0\end{matrix}\right)-\left(\begin{matrix}0&0\\1&1\end{matrix}\right),
$$
and each of the matrices on the rhs are idempotents. QED
It remains to show that diagonal matrices of the form $(a,0;0,0)$ are linear combinations of idempotents. For this, I will look at the infinite direct sum $V^\omega=V\oplus V\oplus V\oplus\cdots$. This can be identified with the infinite sequences $v=(v_0,v_1,v_2,\ldots)$ for $v_k\in V$, with all but finitely many $v_k$ equal to $0$, under component-wise addition and scalar multiplication. Given any sequence $a_0,a_1,a_2,\ldots$ in $\mathrm{End}(V)$, we use $a_0\oplus a_1\oplus a_2\oplus\cdots$ to represent the linear operator on $V^\omega$ taking $v$ to $(a_0v_0,a_1v_1,\ldots)$.
(II) For any $a\in\mathrm{End}(V)$, the operator $a\oplus 0\oplus 0\oplus\cdots$ is a linear combination of idempotents in $\mathrm{End}(V^\omega)$.
Proof: This is an Eilenberg-Mazur swindle.
The operator $a\oplus(-a)$ on $V\oplus V$ is represented by the traceless matrix $(a,0;0,-a)$ so, by (I), is a linear combination of idempotents in $\mathrm{End}(V\oplus V)$. Grouping the factors of $V$ in the definition of $V^\omega$ into pairs,
$$
V^\omega\cong(V\oplus V)\oplus(V\oplus V)\oplus(V\oplus V)\oplus\cdots
$$
and applying the decomposition of $a\oplus(-a)$ into idempotents to each factor $V\oplus V$ shows that
$$
L\equiv a\oplus(-a)\oplus a\oplus(-a)\oplus a\oplus(-a)\oplus\cdots
$$
decomposes into a linear combination of idempotents in $\mathrm{End}(V^\omega)$. Similarly, grouping the factors of $V^\omega$ as
$$
V^\omega\cong V\oplus(V\oplus V)\oplus(V\oplus V)\oplus\cdots,
$$
we can apply the decomposition of $a\oplus(-a)$ into idempotents to each factor of $V\oplus V$ and the zero map to the first factor $V$ to show that
$$
M\equiv0\oplus a\oplus(-a)\oplus a\oplus(-a)\oplus a\oplus(-a)\oplus\cdots
$$
is a linear combination of idempotents. So, $L+M=a\oplus0\oplus0\oplus\cdots$ is a linear combination of idempotents. QED
(III) For any $a\in\mathrm{End}(V)$, the matrix $\left(\begin{matrix}a&0\\0&0\end{matrix}\right)$ is a linear combination of idempotents.
Proof: First, using the fact that $\aleph_0\times\kappa=\kappa$ for any infinite cardinal $\kappa$, we have
$$
\mathrm{dim}(V^\omega)=\aleph_0\times\mathrm{dim}(V)=\mathrm{dim}(V),
$$
so $V\cong V^\omega$. Identifying the second factor of $V$ with $V^\omega$ in $V\oplus V$ gives the sequence of isomorphisms
$$
\begin{align}
V\oplus V&\cong V\oplus V^\omega= V\oplus(V\oplus V\oplus V\oplus\cdots)\\
&\cong V\oplus V\oplus V\oplus\cdots=V^\omega.
\end{align}
$$
Under this map, the operator $a\oplus 0$ represented by the matrix $(a,0;0,0)$ gets taken to $a\oplus0\oplus0\oplus\cdots$, which is a linear combination of idempotents by (II). QED
Putting these together gives,
(IV) Every endomorphism of $V$ is a linear combination of idempotents.
Proof: As above, using the fact that $\mathrm{End}(V)\cong \mathrm{M}_2(\mathrm{End}(V))$, we need to show that any $2\times2$ matrix of endomorphisms of $V$ is a linear combination of idempotents. Writing
$$
\left(\begin{matrix}a&b\\c&d\end{matrix}\right)=\left(\begin{matrix}-d&b\\c&d\end{matrix}\right)+\left(\begin{matrix}a+d&0\\0&0\end{matrix}\right),
$$
the first term on the rhs is a linear combination of idempotents by (I) and, similarly for the second term using (III). QED