Let $$\hat{\varphi_n}(t)=\frac{1}{n}\sum_{j=1}^n{exp(i{t}Y_j)}\quad(t\in\mathbb{R})$$ denote the empirical characteristic function of the residuals $Y_j\,=\,S_n^{-\frac{1}{2}}(X_j-\bar{X}_n),\quad j=1,\dots,n,$ where $\bar{X}_n=\frac{1}{n}\sum_{j=1}^n{X_j}$ ist the sample mean and $S_n^{-\frac{1}{2}}$ is (almost sure) the positiv square root of the inverse of the sample variance $ S_n=\frac{1}{n}\sum_{j=1}^n{(X_j-\bar{X}_n)^2}$.
I have to solve the integral of the test statistic $$ T_n= n \int_{\mathbb{R}}{\left|\hat{\varphi_n}(t)-exp\left(-\frac{1}{2}t^2\right)\right|^2}\psi(t)dt, $$ where $\psi(t)=(2\pi)^{-1/2}exp(-\frac{1}{2}t^2)$.
I know carrying out the integration leads us to
$$ T_n=\frac{1}{n}\sum_{j,k=1}^n{exp(-\frac{1}{2}R_{jk})}-2^{1-\frac{1}{2}}\sum_{j=1}^n{exp(-\frac{1}{4}R_{j}^2)}+n3^{-\frac{1}{2}}, $$ where $\quad R_{jk}=(X_j-X_k)^2S_n^{-1}=\left|Y_j-Y_k\right|^2\quad$ and $\quad R_{j}^2=(X_j-\bar{X}_n)^2S_n^{-1}=\left|Y_j\right|^2$.
I dont have any idea how to proceed. Can someone help me?
The test statistic can be found in "A Consistent Test for Multivariate Normality Based on the Empirical Characteristic Function" by L. Baringhaus and N. Henze.