In a proof to show that $\int_{0}^{1} f \left(\left\{1/x\right\}\right) \frac{ \mathrm{d}x}{1-x}=\int_{0}^{1} f(v) \frac{ \mathrm{d}v}{v}$, i found this line : $$\sum_{k=1}^{\infty}\int_{\frac{1}{k+1}}^{\frac{1}{k}} f \left(\left\{1/x\right\}\right) \frac{ \mathrm{d}x}{1-x} = \sum_{k=1}^{\infty} \int_{k}^{k+1} f \left(\left\{ u \right\}\right) \: \frac{\mathrm{d} u}{u(u-1)}$$
I'm having some trouble understanding the process $\int_{\frac{1}{k+1}}^{\frac{1}{k}} f \left(1/x\right) \frac{ \mathrm{d}x}{1-x}=\int_{k}^{k+1} f \left(u \right) \: \frac{\mathrm{d} u}{u(u-1)}$.
Using the formula $$\int_{\phi(a)}^{\phi(b)}f(x)\,\mathrm dx=\int_a^bf\big(\phi(t)\big)\phi^\prime(t)\,\mathrm dt.$$ with $\phi(x)=1/x$, i lack the $\phi'(x)$. How does it work ?