Let $f \colon \mathbb{R} \to \mathbb{R}$ be a continuous functions that is nowhere differentiable. From this question (Does there exist a nowhere differentiable, everywhere continous, monotone somewhere function?) , I know that it follows that $f$ is monotone on no interval.
Let $x$ be a real number. We say that $f$ is non-decreasing at $x$ if there is a neighborhood of $x$, $N_x$, such that $\frac{f(y)-f(x)}{y-x} \ge 0$ if $y \in N_x-\{x\}$.
If a function is continuous everywhere and differentiable nowhere, does it follow that it is monotonic at no point? If this is not the case can you please give a counterexample?