Let $\displaystyle \gamma$ denote the Euler constant defined by $\displaystyle \gamma := \lim\limits_{n \to \infty} \left(\frac11+\frac12+\cdots+\frac1n- \log n\right)$.
Here is an integral for $\gamma$.
$$ \gamma = \int_0^1 \frac{ \left\{1/x\right\}1/x}{\lfloor1/x\rfloor} \mathrm{d}x $$
where $\displaystyle \left\{x\right\}$ and $\displaystyle \lfloor x \rfloor$ denote the fractional part and the integer part of $x$ respectively.
We may generalize the previous result.
Let $z$ be a complex number such that $\Re{z}>-1$. Then
$$ \psi(z+1) =\int_{0}^{1} \frac{z-\left\{1/x\right\}}{z+\lfloor1/x\rfloor} \: \frac{\mathrm{d}x }{x} $$ where $\displaystyle \psi:= \Gamma'/\Gamma.$
Could you prove it?