Let $A$ be a sudoku-matrix. Assume that its determinant is positive. What is the lowest, what the highest possible value for the determinant of $A$ ? $A$ must have the dominant eigenvalue $45$, but this does not seem to help establishing bounds.
My records so far :
$$\pmatrix{7&2&9&6&4&3&5&1&8 \\ 5&6&8&9&1&2&7&4&3 \\ 1&3&4&8&5&7&9&6&2 \\ 2&8&7&4&6&1&3&9&5 \\ 9&5&1&7&3&8&6&2&4 \\ 3&4&6&2&9&5&8&7&1 \\ 4&9&3&5&2&6&1&8&7 \\ 8&1&2&3&7&9&4&5&6 \\ 6&7&5&1&8&4&2&3&9}$$
leads to a sudoku-matrix with determinant $1215$. $$\pmatrix{4&3&1&9&7&5&2&6&8 \\ 6&7&2&3&8&1&9&5&4 \\ 8&9&5&6&4&2&7&1&3 \\ 5&4&9&1&6&8&3&2&7 \\ 7&1&3&4&2&9&6&8&5 \\ 2&8&6&5&3&7&4&9&1 \\ 1&5&4&7&9&6&8&3&2 \\ 9&2&7&8&5&3&1&4&6 \\ 3&6&8&2&1&4&5&7&9 }$$
leads to a sudoku-matrix with determinant $238 615 470$.
Additional question :
Can a sudoku-matrix have multiple eigenvalues and, even more interesting, be not diagonalizable or have a minimal polynomial different from the characteristic polynomial ?
I also found a singular sudoku matrix :
$$\pmatrix{6&5&3&9&4&7&8&1&2 \\ 9&8&7&1&6&2&4&3&5 \\ 4&2&1&3&5&8&6&7&9 \\ 5&3&8&4&2&6&1&9&7 \\ 2&7&4&5&9&1&3&8&6 \\ 1&9&6&7&8&3&2&5&4 \\ 8&6&5&2&1&9&7&4&3 \\ 3&1&9&6&7&4&5&2&8 \\ 7&4&2&8&3&5&9&6&1}$$
I found out that the determinant must be a multiple of $405$, so $405$ is a lower bound. I found a sudoku-matrix with determinant $405$ , so it remains to find the maximum.