April 2017. There has been some interest for the case with some coefficients $0.$ I decided to write it with $c=0.$
IF $c=0,$ so that
$$a x^2 + b x y + d x + e y + f = 0, $$
THEN
$$ ( a b x + b^2 y + b d - a e ) ( b x + e) = - b^2 f - a e^2 + bde. $$
The right hand side is an integer constant, all its divisors, positive and negative, can be found. For each divisor $$ t | (- b^2 f - a e^2 + bde), $$
solve
$$ bx + e = t, $$
$$ a b x + b^2 y + b d - a e = \frac{- b^2 f - a e^2 + bde}{t}, $$
and make sure that both $x,y$ come out as integers.
===========================================================================
IF we take instead $a=0,$ so that
$$ b x y + c y^2+ d x + e y + f = 0, $$
THEN
$$ ( b^2 x + b c y + b e - cd ) ( b y + d) = - b^2 f - c d^2 + bde. $$
===========================================================================
IF we have both $a=c=0,$
$$ b x y + d x + e y + f = 0, $$
THEN
$$ ( bx+e ) ( b y + d) = - b f + de, $$
where we see we got to erase one factor of $b$ throughout.
===========================================================================