Let be $T \in \mathbb{L}(E,F)$ (linear and bounded), where $E, F$ are Banach spaces. And let be $E^*$, the dual space of $E$ .
If we define: $Ker(T)^\perp=\{\gamma \in E^* : \gamma(x)=0, \forall x \in ker(T)\}$. Prove
$d(x, Ker(T))=max\{|\phi(x)|: \phi \in Ker(T)^\perp, ||\phi||=1\}$.
I can prove $d=d(x, Ker(T))\geq max\{|\phi(x)|: \phi \in Ker(T)^\perp, ||\phi||=1\}$. Let be $\epsilon>0$, then there is $w \in ker(T)$ such as $||x-w||<d+\epsilon$. Let be $\phi \in Ker(T)^\perp, ||\phi||=1$, then $|\phi(x)|=|\phi(x-w)|\leq||\phi||||x-w||<d+\epsilon$ then $max\{|\phi(x)|: \phi \in Ker(T)^\perp, ||\phi||=1\}\leq d +\epsilon$, for all $\epsilon>0$, then we have $d\geq max\{|\phi(x)|: \phi \in Ker(T)^\perp, ||\phi||=1\}.$
I can't prove $d\leq max\{|\phi(x)|: \phi \in Ker(T)^\perp, ||\phi||=1\}.$ Thanks a lot for your help.