Is it possible to obtain an explicit solution for $K$ for the following equation?
$$(e^K - 1)(e^{\beta K} - 1) = q$$ for $0\leq q \leq 4$ and $0\leq \beta \leq 1$
For $\beta=1$ one gets $K=\log{\left(1+\sqrt{q}\right)}$.
EDIT
Actually this equation determines the critical point of the Potts model on the square lattice with a ratio $\beta$ of horizontal and vertical coupling constants. I was wondering if it is possible to find a transformation of this equation for specific, possibly rational, values of $\beta$, which allows to solve this equation.