Let $A$ be $m\times n$ matrix with rank $r=\min(m,n)$. How do we show that rank$(A^T A)$ is $r$.
-
do you mind to say what $A'$ is... – Jul 02 '14 at 13:13
-
Matrix transpose, http://en.wikipedia.org/wiki/Transpose – Lionville Jul 02 '14 at 13:16
-
why do you make $A^\top A$ when it is usually denoted by $A^TA$ – Jul 02 '14 at 13:21
-
1http://math.stackexchange.com/questions/48989/how-to-prove-textrankab-leq-min-textranka-textrankb should be of some help to you.. – Jul 02 '14 at 13:22
3 Answers
Hint: show that $A$ and $A^TA$ have the same nullspace. That is, $$ Ax = 0 \iff A^TAx = 0 $$ It is helpful to note that $x^T(A^TAx) = \|Ax\|^2$
- 234,171
- 12
- 184
- 355
Firstly, we proof than $\mathsf{Null} A=\mathsf{Null} (A^TA)$ ($A$ is an $m\times n$ matrix):
a) $\mathsf{Null} A\subset \mathsf{Null} (A^TA)$, because $\mathsf{Null} A$ is always a subset of $\mathsf{Null}(BA)$.
b) If $x\in\mathsf{Null} (A^TA)$, then $A^T(Ax)=0$ and, so, $Ax\in\mathsf{Null}(A^T)$. In the other hand, $Ax$ is in the column space of $A$, $\mathsf{Col}A$. Then, $$ Ax\in\mathsf{Null}(A^T)\cap \mathsf{Col}A $$ But we know $\mathsf{nul}(A^T)=(\mathsf{Col}A)^\perp$, and, so, $\mathsf{Null}(A^T)\cap \mathsf{Col}A=\emptyset$. Consequently, $Ax=0$, and $x\in\mathsf{Null}A$.
Now, $$ \mathsf{rank} (A^TA)=n-\mathsf{dim} \mathsf{Null} (A^TA)= n-\mathsf{dim} \mathsf{Null} A=\mathsf{rank} A $$
- 236
What you need is to use the Singular Value Decomposition. Then, just have a look what happens with singular values. Here is a link: http://en.wikipedia.org/wiki/Singular_value_decomposition
- 106
- 3
-
1
-
1It is, but it was the first thing that came to my mind because I used it on a different problem few hours ago. – Jan Jul 02 '14 at 13:46