Thanks to Lahtonen's suggestion to use Chebyshev's polynomials, I was able to answer the question. I used this paper as a reference on the properties of the polynomials.
I'll prove $\frac{\sin((n+1)\theta)}{\sin(\theta)} = U_n(\cos(\theta))$ using induction (the paper used complex numbers to prove it).
$$
\frac{\sin(\theta)}{\sin(\theta)} = 1 = U_0(\cos(\theta)), \qquad
\frac{\sin(2\theta)}{\sin(\theta)} = 2\cos(\theta) = U_1(\cos(\theta)), \\ {~}\\ {~}\\
\begin{aligned}
\frac{\sin((n+1)\theta)}{\sin(\theta)}
&= 2\cos(\theta)\frac{\sin(n\theta)}{\sin(\theta)} - \frac{\sin((n-1)\theta}{\sin(\theta)} \\
&= 2\cos(\theta)U_{n-1}(\cos(\theta))-U_{n-2}(\cos(\theta)) \\
&= U_n(\cos(\theta))
\end{aligned}$$
Using Identities 7/9 in the linked paper, it followed that
$$\sin((2m+1)\theta) = (-1)^mT_{2m+1}(\sin(\theta))$$
Since $T_{2m+1}$ is an odd polynomial, I can factor it as such:
$$\sin((2m+1)\theta) = \sin(\theta)R_{2m}(\sin(\theta))$$
where $R_{2m}$ is an even polynomial of degree $2m$ with the following properties:
- unique roots are $u_k = \sin\left(\frac{k\pi}{2m+1}\right)$ for $k =\pm 1, \ldots, \pm m$.
- constant term is $2m+1$
- leading coefficient is $(-1)^m 2^{2m}$
Therefore, $$\prod_{k=1}^m u_k u_{-k} = (-1)^m \frac{2m+1}{2^{2m}}$$
By symmetry properties of the sine function, $$\prod_{k=1}^{2m} \sin\left(\frac{k\pi}{2m+1}\right) = \frac{2m+1}{2^{2m}} \qquad \square$$
This proves the identity for when $n$ is an odd integer. I'll introduce an abbreviation for simplicity's sake: let $F(n) = \prod_{k=1}^{n-1} \sin(k\pi/n)$. We have shown that $F(2m+1) = 2^{-2m}(2m+1)$ Also note that
$$F(2m+1) = \prod_{k=1}^{m} \sin^2\left(\frac{k\pi}{2m+1}\right) = \prod_{k=1}^{m} \cos^2\left(\frac{(2m+1-2k)\pi}{4m+2}\right)$$
This will be useful soon. Now, let $n=2m$.
$$F(2m) = \prod_{k=1}^{m-1} \sin^2\left(\frac{k\pi}{2m}\right) = \prod_{k=1}^{m-1} \cos^2\left(\frac{(m-k)\pi}{2m}\right) = \prod_{k=1}^{m-1} \cos^2\left(\frac{k\pi}{2m}\right)$$
I'll need to split this in two cases again: $n=4m$ and $n=4m+2$.
$$\begin{aligned}
F(4m+2) &= \prod_{k=1}^{2m} \cos^2\left(\frac{k\pi}{4m+2}\right) \\
&= \prod_{k=1}^m \left(\cos\left(\frac{k\pi}{4m+2}\right)\cos^2\left(\frac{(2m+1-k)\pi}{4m+2}\right) \right)^2 \\
&= \prod_{k=1}^m \frac{1}{4} \cos^2 \left(\frac{(2m+1-2k)\pi}{4m+2}\right) \\
&= \frac{1}{2^{2m}}F(2m+1) \\
&= \frac{1}{2^{2m}}\cdot\frac{2m+1}{2^{2m}} &\square
\end{aligned}$$
and finally, assume that $F(n)=\frac{n}{2^{n-1}}$ for all $n<4m$,
$$\begin{aligned}
F(4m) &= \prod_{k=1}^{2m-1} \cos^2\left(\frac{k\pi}{4m}\right) \\
&= \frac{1}{2}\prod_{k=1}^{m-1} \left(\cos\left(\frac{k\pi}{4m}\right)\cos\left(\frac{(2m-k)\pi}{4m}\right) \right)^2 \\
&= \frac{1}{2}\prod_{k=1}^{m-1} \frac{1}{4}\cos^2\left(\frac{(m-k)\pi}{2m}\right) \\
&= \frac{1}{2^{2m-1}} F(2m) \\
&= \frac{1}{2^{2m-1}}\cdot \frac{2m}{2^{2m-1}} & \blacksquare
\end{aligned}$$