Let $E$ a normed linear space and $H$ the closed hyperplane $H=\ker f$, where $f\in L(E,\mathbb{R})$, $f\not\equiv 0$. Show that if $a\in E$ then $$d(a,H)=\frac{|f(a)|}{||f||}$$ And the problem have a second part: Let $E$ the space of all $x_n\to 0$. With $\displaystyle||(x_n)||=\sup_{n\in\mathbb{N}}|x_n|$. Let $H$ the closed hyperplane $H=f^{-1}(\{0\})$, with $$f(x)=\sum_{n=0}^{\infty}\frac{x_n}{2^n}$$ if $x=(x_n)$. Show that if $a\notin H$ then there is no $b\in H$ such that $d(a,H)=||a-b||$.
PD: i'm stuck in the two parts, any help. I try to write the definition $d(a,H)=\inf \{||a-x||:x\in H\}$ but no have more ideas!