-1

Please provide steps to solve this integral:

$$3\int^t_0{\sin{u}(t-u)e^{-(t-u)}du}.$$

1 Answers1

2

Here is a start.

$$ f(t) = 3\int^t_0{\sin{u}(t-u)e^{-(t-u)}du} = 3e^{-t}\int^t_0{\sin{u}(t-u)e^{u}du} $$

$$ = 3te^{-t} \int^t_0{\sin{u}\,e^{u}du} - 3e^{-t} \int^t_0{u\sin{u}\,e^{u}du}. $$

To make it easier to evaluate the last two integrals use the identity

$$ \sin u = \frac{e^{iu}-e^{-iu}}{2i} $$

Another approach:

We can use the fact

$$ \mathcal{L} (g*h) = \mathcal{L}(g) \mathcal{L}(h).$$

Taking the Laplace of

$$ f(t) = 3\int^t_0{\sin{u}(t-u)e^{-(t-u)}du} $$

gives

$$ F(s) = \frac{1}{(s^2+1)(s-1)^2}. $$

Using partial fraction we can have the form

$$ - \frac{1}{2(s-1)}+\frac{1}{2(s-1)^2}+\frac{1}{4(s-i)}+\frac{1}{4(s+i)}.$$

Now you can use the tables of Laplace transform. I think you can finish the problem.