For vector spaces $V,W$, probe that $\Lambda (V)\otimes\Lambda (W) \cong \Lambda (V\oplus W)$.
I have tried to use the universal property, but I can not create the necessary linear transformation.
For vector spaces $V,W$, probe that $\Lambda (V)\otimes\Lambda (W) \cong \Lambda (V\oplus W)$.
I have tried to use the universal property, but I can not create the necessary linear transformation.