Evaluation of $$\int \tan x\sqrt{1+\sin x}\mathrm dx$$
$\bf{My\; Try:}$
Let $(1+\sin x)= t^2\;$, then $$\displaystyle \cos x\,\mathrm dx= 2t\mathrm dt\implies\mathrm dx = \frac{2t}{\sqrt{2-t^2}}\mathrm dt$$
So, the integral becomes $$\displaystyle 2\int \frac{t^2}{\sqrt{2-t^2}} \frac{(t^2-1)}{\sqrt{2-t^2}}\mathrm dt = 2\int\frac{t^4-t^2}{2-t^2}\mathrm dt $$
Now, how can I proceed after this? Please help me.