Can someone please verify this?
Show that if $B \subseteq C$, then $\mathcal{P}(B) \subseteq \mathcal{P}(C)$
let $x \in \mathcal{P}(B)$.
Then, $x \subseteq B$
This implies that $$\forall a \in x, a \in B$$
This further implies that $$\forall a \in x, a \in C$$
Therefore, $$x \subseteq C$$
This implies that $$x \in \mathcal{P}(C)$$