One of methods:
$p=\dfrac{x}{y}$, $q=\dfrac{y}{z}$, $r=\dfrac{z}{x}=\dfrac{1}{pq}$.
(one of them must be $\le 1$).
$$
p+q+\dfrac{1}{pq}=n,
$$
$$
p^2q+pq^2+1-npq=0,
$$
(quadratic equation on $q$):
$$
p\cdot q^2 + (p^2-np)q+1=0
$$
$$
q_{1,2}=\dfrac{np-p^2\pm\sqrt{p^4-2np^3+n^2p^2-4p}}{2p}.
$$
To be $q_{1,2}$ rational, must be
$$
p^4-2np^3+n^2p^2-4p = s^2, \qquad s\in \mathbb{Q}.
$$
If $p=\dfrac{a}{b}$, then $(x,y,z)=(2ab, 2b^2, abn-a^2\pm s)$ (after killing all common factors).
Of course, cyclic shift of $x,y,z$ may be applied here.
This way, we can find a few integer values of $n$ for not so large vlues of $x,y,z$ (see table below):
\begin{array}{|c|ll|}
\hline
n & (x,y,z) & \\ \hline
3 & (1,1,1) & \\ \hline
5 & (1,2,4) & \\ \hline
6 & (4, 3, 18) & = (1\cdot 2^2, 3\cdot 1^2, 2\cdot 3^2) \\
& (9, 2, 12) & = (1\cdot 3^2, 2\cdot 1^2, 3\cdot 2^2)\\ \hline
9 & (12, 63, 98) & =(3\cdot 2^2, 7\cdot 3^2, 2\cdot 7^2) \\
& (18, 28, 147) &= (2\cdot 3^2, 7\cdot 2^2, 3\cdot 7^2) \\ \hline
10 & (175, 882, 1620) & = (7\cdot 5^2, 18 \cdot 7^2, 5\cdot 18^2 ) \\
& (245, 450, 2268) & = (5\cdot 7^2, 18 \cdot 5^2, 7\cdot 18^2) \\ \hline
13 & (1053, 6422, 12996) & =(13\cdot 9^2, 38\cdot 13^2, 9\cdot 38^2)\\
& (1521, 3078, 18772) & = (9\cdot 13^2, 38\cdot 9^2, 13\cdot38^2) \\ \hline
14 & (98, 52, 1183) & = (2\cdot 7^2, 13\cdot 2^2, 7\cdot 13^2)\\
& (338, 28, 637) & = (2\cdot 13^2, 7\cdot 2^2, 13\cdot 7^2)\\ \hline
17 & (1620, 925, 24642) & = (5\cdot 18^2, 37\cdot 5^2, 18\cdot 37^2) \\
& (6845, 450, 11988) & = (5\cdot 37^2, 18\cdot 5^2, 37\cdot 18^2) \\ \hline
18 & (22932, 16055, 379050) \\
& (117325, 7098, 167580) \\ \hline
19 & (25, 9, 405) \\
& (81, 5, 225) \\ \hline
21 & (338, 84, 5733) \\
& (882, 52, 3549) \\ \hline
26 & (12996, 7371, 314678) \\
& (74529, 3078, 131404) \\ \hline
29 & (31347, 336518, 894348) \\
& (49923, 132678, 1424332) \\ \hline
30 & (882, 124, 20181) \\
& (1922, 84, 13671) \\ \hline
38 & (739900, 14341829, 27694870) \\
& (1596070, 3082100, 59741791) \\ \hline
41 & (2, 36, 81) \\
& (4, 9, 162) \\
& (196, 5, 350) \\
& (25, 14, 980) \\
& (3698, 124, 41323) \\
& (1922, 172, 57319) \\ \hline
51 & (1053, 13013, 53361) \\
& (1521, 6237, 77077) \\ \hline
53 & (28, 1323, 1458) \\
& (98, 108, 5103) \\ \hline
54 & (3698, 228, 139707) \\
& (6498, 172, 105393) \\ \hline
57 & (1825900, 32851, 2567110) \\
& (157339, 111910, 8745100) \\
66 & (3, 126, 196) \\
& (9, 14, 588) \\ \hline
69 & (6498, 292, 303753) \\
& (10658, 228, 237177) \\
& (167580, 4720075, 11488218) \\
& (379050, 922572, 25985255) \\ \hline
83 & (225, 4941, 18605) \\
& (405, 1525, 33489) \\ \hline
86 & (10658, 364, 604513) \\
& (16562, 292, 484939) \\ \hline
94 & (12229083, 132678, 22292452) \\
& (894348, 490617, 82433078) \\ \hline
105 & (24642, 364, 919191) \\
& (16562, 444, 1121211) \\ \hline
106 & (1225, 54, 102060) \\
& (35, 66150, 2916) \\ \hline
... & ...
\end{array}
It iv very interesting that all founded values have form
$$
(x,y,z)_1 = (a^2b, b^2c, c^2a);\\
(x,y,z)_2 = (b^2a, a^2c, c^2b).
$$