Let $f : \mathbb{D} → \mathbb{D},$ $f(z) = \sum_{n = 0}^{\infty} a_nz^n$ be a bounded analytic function
a.) Prove that for any $r < 1, \sum_{n = 0}^\infty |a_n|^2r^{2n} = \frac{1}{2π}\int_0^{2\pi} |f(re^{it})|^2 dt.$
b.) Show that the series $\sum_{n=0}^\infty |a_n|^2$ converges.
I am having trouble with the following complex qual problem. Any suggestions? Thanks