I provide a detailed answer to my question:
Proposition. If $s>1/2$, then there exists a $c_s>0$, such that for every
$u,\upsilon\in H^s(\mathbb T)$
\begin{equation*}
\| u\upsilon\|_{H^s} \,\le\, c_s\, \|u\|_{H^s} \|\upsilon\|_{H^s},
\end{equation*}
Proof. If $s>1/2$, then
$H^s(\mathbb T)\subset L^\infty(\mathbb T)$ and for every
$u\in H^s(\mathbb T)$,
$$
\|u\|_{L^\infty}\le c\|u\|_{H^s},
$$
where $c>0$ does not depend on $u$. The
proposition is now a corollary of the following result:
Lemma. Let $s\ge 0$, then there exists
a constant $c_s>0$, such that
\begin{equation*}
\| u\upsilon\|_{H^s} \,\le\,
c_s\, \big( \|u\|_{H^s}\|\upsilon\|_{L^\infty}+\|u\|_{L^\infty}\|\upsilon\|_{H^s}\big)
\end{equation*}
for every $u,\upsilon \in H^s(\mathbb T)\cap L^\infty(\mathbb T)$.
Proof. First note that the $H^s-$norm is defined as
$\|w\|_{H^s}^2=\sum_{k\in\mathbb Z}(1+k^2)^s|\widehat{w}_k|^2$, for
$w(x)=\sum_{k\in\mathbb Z}\widehat{w}_k\mathrm{e}^{\mathrm{i}kx}$; in particular,
for $s=0$, the $H^s-$norm coincides with the $L^2-$norm.
Using the inequality
$$
\big(1+(x+y)^2\big)^{s/2} \le c\,\big( (1+x^2)^{s/2}+(1+y^2)^{s/2}\big),
$$
where $x,y\in\mathbb R$ and $c=\max\{2^{s/2},2^{s-1}\}$, we obtain
\begin{align*}
(1+k^2)^{s/2} \big|\widehat{u\upsilon}(k)\big| \,=\,& (1+k^2)^{s/2}
\Big|\sum_{\ell\in\mathbb Z} \widehat{u}(k-\ell)\widehat{\upsilon}(\ell)\,\Big| \\
\,\le\, & c\sum_{\ell\in\mathbb Z} \big( (1+(k-\ell)^2)^{s/2}+(1+\ell^2)^{s/2}\big)
\lvert\widehat{u}(k-\ell)\rvert\lvert\widehat{\upsilon}(\ell)\rvert \\
\,=\, & c\sum_{\ell\in\mathbb Z} (1+(k-\ell)^2)^{s/2}
\lvert\widehat{u}(k-\ell)\rvert\lvert\widehat{\upsilon}(\ell)\rvert
+c\sum_{\ell\in\mathbb Z} (1+\ell^2)^{s/2}
\lvert\widehat{u}(k-\ell)\rvert\lvert\widehat{\upsilon}(\ell)\rvert.
\end{align*}
Therefore
\begin{align*}
(1\!+\!k^2)^{s} \big|\widehat{u\upsilon}(k)\big|^2 \le& 2c^2
\Big(\!
\sum_{\ell\in\mathbb Z}
(1\!+\!(k\!-\!\ell)^2)^{s/2}
\lvert\widehat{u}(k\!-\!\ell)\rvert \lvert\widehat{\upsilon}(\ell)\rvert
\Big)^{\!2} \\ &+2c^2\Big(\!
\sum_{\ell\in\mathbb Z}
(1\!+\!\ell^2)^{s/2}\lvert\widehat{u}(k\!-\!\ell)\rvert
\lvert\widehat{\upsilon}(\ell)\rvert
\Big)^{\!2}. \qquad\qquad\qquad\qquad\qquad (\star)
\end{align*}
If we set
$$
f(x)=\!\sum_{k\in\mathbb Z} \lvert \widehat{u}_k\rvert\mathrm{e}^{\mathrm{i}kx},\,
g(x)=\!\sum_{k\in\mathbb Z} \lvert \widehat{\upsilon}_k\rvert\mathrm{e}^{\mathrm{i}kx},\,
F(x)=\!\sum_{k\in\mathbb Z} (1\!+\!k^2)^{s/2}\lvert\widehat{u}_k\rvert\mathrm{e}^{\mathrm{i}kx},\,
G(x)=\!\sum_{k\in\mathbb Z} (1\!+\!k^2)^{s/2}\lvert\widehat{\upsilon}_k\rvert\mathrm{e}^{\mathrm{i}kx},
$$
then $(\star)$ provides that
\begin{align*}
(1+k^2)^{s} \big|\widehat{u\upsilon}(k)\big|^2 \le 2c^2
\Big( \big\lvert\widehat{fG}(k)\big\rvert^2+\big\lvert\widehat{Fg}(k)\big\rvert^2\Big),
\end{align*}
and hence
\begin{align*}
\|u\upsilon\|_{H^s}^2&=\sum_{k\in\mathbb Z}(1+k^2)^{s} \big|\widehat{u\upsilon}(k)\big|^2
\le 2c^2
\sum_{k\in\mathbb Z}\Big( \big\lvert\widehat{fG}(k)\big\rvert^2
+\big\lvert\widehat{Fg}(k)\big\rvert^2\Big)
=2c^2\Big(\|fG\|_{L^2}^2+\|Fg\|_{L^2}^2\Big) \\
&\le 2c^2\big(\|f\|_{L^\infty}^2\|G\|_{L^2}^2+\|F\|_{L^2}^2\|g\|_{L^\infty}^2\big)
=2c^2\big(\|u\|_{L^\infty}^2\|\upsilon\|_{H^s}^2+\|u\|_{H^s}^2\|\upsilon\|_{L^\infty}^2\big),
\end{align*}
which concludes the proof. $\qquad$ Ὅ.Ἔ.Δ.
Note. An almost identical proof provides that $\,H^s(\mathbb T^k)\,$ is a Banach algebra for $s>k/2$.