1 Answers1

3

We have

$$\frac{1}{\sqrt{r+1}+\sqrt{r}}=\frac{\sqrt{r+1}-\sqrt{r}}{(\sqrt{r+1}+\sqrt{r})(\sqrt{r+1}-\sqrt{r})}=\frac{\sqrt{r+1}-\sqrt{r}}{r+1-r}=\sqrt{r+1}-\sqrt{r}.$$

So

$$\sum_{r=1}^{99}\frac{1}{\sqrt{r+1}+\sqrt{r}}=\sum_{r=1}^{99} (\sqrt{r+1}-\sqrt{r})=\sqrt{100}-\sqrt{1}=10-1=9.$$

mfl
  • 29,849
  • 1
  • 31
  • 52