Given a cubic polynomial $f(x)=x^3+px+q, p,q\in \mathbb{Q}$ and one of its roots $x_1$, how to express another root $x_2$ in terms of $x_1$, square root of the discriminant $d=\sqrt{-4p^3-27q^2}$, and $p,q$?
I am looking for an expression without radicals. Of course, one can solve $x_1+x_2+x_3=0, x_1 x_2 x_3=-q$ for $x_2,x_3$ and get $x_{2,3}=(-x_1\pm \sqrt{x_1^2+4q/x_1})/2$, but there should exist a relation without square root, because the splitting field of $f(x)$ is $\mathbb{Q}(x_1,x_2)=\mathbb{Q}(x_1,d)$, and hence $x_2$ is a linear combination $x_2=ax_1+bd$ with some $a,b\in \mathbb{Q}(x_1,x_2)$.