I need to solve a congruence system like this:
$30f_0+26f_1+8f_2+38f_3+2f_4+40f_5+20f_6 \equiv 0 \pmod{41}$ $38f_0+2f_1+40f_2+20f_3+30f_4+26f_5+8f_6 \equiv 0 \pmod{41}$ $40f_0+20f_1+30f_2+26f_3+8f_4+38f_5+2f_6 \equiv 0 \pmod{41}$
I cannot find an algorithm to do this. I found CRT, Euclidean alg etc., but Im not sure if they can be used. How is this kind of congruences solved ? Is there any C++/Java library(like NTL), which I can use ?