$\newcommand{\R}{\mathbf{R}}$Let $U$ be an open set in $\R^{2}$ and $f:U \to \R$ a differentiable function. If $x_{0} \in U$, then by definition there exists a linear function $Df(x_{0}):\R^{2} \to \R$ such that
$$
\lim_{x \to x_{0}} \frac{|f(x) - f(x_{0}) - Df(x_{0})(x - x_{0})|}{\|x - x_{0}\|} = 0.
$$
If $e_{1}$ and $e_{2}$ denote the standard basis of $\R^{2}$, then the partial derivatives of $f$ at $x_{0}$ are defined to be the components of $Df(x_{0})$:
$$
f_{1}(x_{0}) = Df(x_{0})(e_{1}),\qquad
f_{2}(x_{0}) = Df(x_{0})(e_{2}).
$$
That is, $[\begin{matrix} f_{1}(x_{0}) & f_{2}(x_{0})\end{matrix}]$ is the standard matrix of $Df(x_{0})$.
The gradient vector $\nabla f(x_{0})$ is defined to be the transpose,
$$
\nabla f(x_{0})
= \left[\begin{matrix}
f_{1}(x_{0}) \\
f_{2}(x_{0})
\end{matrix}\right].
$$
Rearranging the definition of the derivative gives the linear approximation formula
$$
f(x) = f(x_{0}) + Df(x_{0})(x - x_{0}) + o\bigl(\|x - x_{0}\|\bigr).
$$
Particularly, if
$v = \left[\begin{matrix}
v_{1} \\
v_{2}
\end{matrix}\right]$
is an arbitrary vector, then
\begin{align*}
f(x_{0} + tv)
&= f(x_{0}) + Df(x_{0})(tv) + o(t) \\
&= f(x_{0}) + t\, Df(x_{0})(v) + o(t) \\
&= f(x_{0}) + t\bigl(f_{1}(x_{0})v_{1} + f_{2}(x_{0})v_{2}\bigr) + o(t) \\
&= f(x_{0}) + t\, \nabla f(x_{0})\cdot v + o(t).
\end{align*}
(The first two equalities follow from linearity of $Df(x_{0})$; the third comes from multiplying matrices; the fourth is the formula for the dot product.)
Introducing the function $g_{v}(t) = f(x_{0} + tv)$, the preceding equation becomes
$$
g_{v}'(0) = \nabla f(x_{0})\cdot v.
$$
This derivative is the rate of change of $f$ at $x_{0}$ in the direction $v$.
If $\nabla f(x_{0}) \neq (0, 0)$, and if $v$ is a unit vector making angle $\theta$ with $\nabla f(x_{0})$, then
$$
f(x_{0} + tv) = f(x_{0}) + t\|\nabla f(x_{0})\|\cos\theta + o(t).
$$
That is, $g_{v}'(0) = \|\nabla f(x_{0})\|\cos\theta$.
It follows immediately that
If $\theta = 0$, i.e., if $v = \dfrac{\nabla f(x_{0})}{\|\nabla f(x_{0})\|}$, then $g_{v}'(0)$ is maximized over all unit vectors.
If $\theta = \pi$, i.e., if $v = -\dfrac{\nabla f(x_{0})}{\|\nabla f(x_{0})\|}$, then $g_{v}'(0)$ is minimized over all unit vectors.
If $\theta = \pi/2$, i.e., if $v \cdot \nabla f(x_{0}) = 0$, then $g_{v}'(0) = 0$, signifying that $f$ is constant to first order at $x_{0}$ in the direction $v$, namely that $v$ is tangent to the level curve of $f$ through $x_{0}$.