I need some assistance in solving this;
Let $ A, B \in M_n$ be positive definite and let $\alpha \in (0,1)$. I need to show that $\alpha A^{-1} + (1-\alpha)B^{-1} \geq ((\alpha A+(1-\alpha)B)^{-1}$ with equality iff A=B. Thus the function $ f(t)=t^{-1}$ is strictly convex on the set of positive definite matrix