Take the Laplace transform of
$$ \int_{0}^{t}x^2(x-t)^4 \cos(x)dx .$$
I'm not quite sure where to start...
Take the Laplace transform of
$$ \int_{0}^{t}x^2(x-t)^4 \cos(x)dx .$$
I'm not quite sure where to start...
Hint: Use the convolution property for the Laplace transform
$$\mathcal{L}(f*g) =\mathcal{L}(f)\mathcal{L}(g). $$
See this related technique.
Note: You can take $f(x)=x^4 $ and $g(x)=x^2\cos(x)$. Finding the Laplace transform of $x^4$ is easy. For $g(x)=x^2\cos(x)$ you can use the Laplace property
$$ \mathcal{L}(x^nh(x)) = (-1)^n H^{(n)}(s), $$
where $H(s)$ is the Laplace transform of $h(x)$.
I had not found any other way than to follow the above suggested. So I just did the labor calculation.
From $$\mathcal{L}(f*g) =\mathcal{L}(f)\mathcal{L}(g),$$ we can set
$f(x)=x^2\cos(x)$ and $g(x)=x^4$ and
Since $\mathcal{L}[(-t)^nf(t)]=F^{(n)}(s)$, we can find that $$\mathcal{L}[t^2\cos(t)]=\frac{d^2}{ds^2}\frac{s}{s^2 + 1}=\frac{2s(s^2-3)}{(s^2 + 1)^3}$$ and together with $\mathcal{L}[t^4]=\frac{4!}{s^5}$, the final answer will be $$ \mathcal{L}[x^2\cos(x)*x^4]=\frac{2s(s^2-3)}{(s^2 + 1)^3}\frac{4!}{s^5}=\frac{48(s^2-3)}{s^4(s^2 + 1)^3}. $$