By a groupoid, I mean a (small) category in which every morphism is an isomorphism.
It looks to me that constructions on a category like the opposite ("dual") category or products and (co-)limits become utterly uninteresting for a groupoid. On the other hand, the core of a category is a groupoid, and it is sufficient to known the allowed isomorphisms to get the core. But what else can I do with this groupoid than talking about isomorphic objects and studying the automorphism groups?
Background Defining the objects and isomorphism of a (otherwise partly undefined category) seems to be much easier than to nail down the (most) appropriate definition of (the allowed) morphisms for a problem at hand. (One reason for this is that I'm often not even sure whether the appropriate morphisms will be maps, or whether relations would be more appropriate.) For example, my preferred introductory "Mathematical Logic" books defines the isomorphisms between two $S$-structures on page 41 is full generality, but only defines the homomorphisms between two $S$-structures on page 204 (and this definition is only appropriate for universal-Horn structures).