Prove that there exists only one function $$\big[f\in C\left ( \left [ 0,1 \right ],\mathbb{R} \right )s.t. f(x)=\frac{2}{5}\int_{0}^{1}(x^{2}+t^{5})f(t)dt+sin(x)\big] $$
Asked
Active
Viewed 105 times