Definition of Transpose is $(A^T)_{ij} = A_{ji}$
$1.$ Why $\begin{bmatrix} M & N \end{bmatrix}^T = \begin{bmatrix} M^T \\ N^T \end{bmatrix}$, and NOT $\begin{bmatrix} M \\ N\end{bmatrix}$?
After the transpose, $M$ is in (1, 1) position and $N$ is in (2,1) position. Why still keep the $^T$?
For example, pursuant to Git Gud's comment, I tried $\begin{bmatrix}
\begin{bmatrix}
1 & 5 \\
3 & 7 \\
\end{bmatrix}
&
\begin{bmatrix}
2 & 6 \\
4 & 8 \\
\end{bmatrix}
\end{bmatrix}^T $.
This means transposing the entries (the two 2 by 2 matrices) once, so: $ \begin{bmatrix} \begin{bmatrix}
1 & 5 \\
3 & 7 \\
\end{bmatrix} \\
\begin{bmatrix}
2 & 6 \\
4 & 8 \\
\end{bmatrix} \end{bmatrix}$ ?
$2.$ Why $\begin{bmatrix} M \\ N \end{bmatrix}^T = \begin{bmatrix} M^T & N^T \end{bmatrix}$, and NOT $ \begin{bmatrix} M & N \end{bmatrix}$ ?
After transpose - $M$ is in (1, 1) position and $N$ is in (1,2) position. Why still keep the $^T$?
Per contra, this example contains not one $^T$ at the end. I recast it as a question.
I see user Eike Schulte's comment and brook that $c^T = c$ for all complex numbers $c$.
$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^T = \begin{bmatrix} a_{11}^T & a_{12}^T \\ a_{21}^T & a_{22}^T \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$