2

How do we discuss the convergence of the following series

i)$\sum _{n=1}^\infty (\sin n)^n $

ii)$\sum _{n=1}^\infty (\cos n)^n $

1 Answers1

6

HINT : Show that there exists a sequence of integers $(p_n)$ and a sequence of integers $(q_n)$ such that $|\pi-\frac{p_n}{q_n}|<\frac{1}{q_n^2}$ for ii)

And, for i) Show that there exists a sequence of integers $(p_n)$ and a sequence of integers $(q_n)$ chosen so that all the terms of ${q_n}$ are odd, such that $|\frac{\pi}{2}-\frac{p_n}{q_n}|<\frac{1}{q_n^2}$

Then, $$\vert \cos(p_n)\vert=\vert \cos(\pi q_n-p_n)\vert>\cos(\frac{1}{q_n})=1-2\sin^2(\frac{1}{2q_n})>1-\frac{1}{2q_n^2}$$ and, $$\vert \cos(p_n)\vert^{p_n}>\bigr(1-\frac{1}{2q_n^2}\bigl)^{p_n}> 1-\frac{p_n}{2q_n^2} $$

Therefore, the sequence $\{(cos(p_n))^{p_n}\}$and $\{ \cos(n)^n\}$ doesn't converge to $0$. It follows that ii) diverge.

For i) It's the same sketch so I leave it to you.